Skip to main content

Importance of Prokaryotes in the Functioning and Evolution of the Present and Past Geosphere and Biosphere

  • Chapter
  • First Online:
Prokaryotes and Evolution

Abstract

On a volcanic and anaerobic planet characterized by abundant hydrothermal activity, physicochemical gradients and disequilibria at the local scale would have been fundamental for the emergence of life on Earth. Unfortunately, the early rock record pertaining to this existential process no longer exists, and, while chemists attempt to recreate life in a test tube, two other approaches can provide some information about early life and its metabolic processes. In the first place, phylogenetic, geological, thermodynamic, and microbiological settings suggest that disproportionation of reduced sulfurous compounds might have been essential for microbial evolution by delivering both sulfide and sulfate on Earth’s surface. These processes would have been fueled by serpentinization reactions in hydrothermal systems. Another approach is to study ancient and modern microbialites in order to better understand primitive microbial metabolic traits that occurred more than 3 billion years ago. The combination of all of these approaches to understanding early terrestrial life is of relevance to the emergence of life on other planets and satellites in the solar system, especially, for example, Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abell PI, Awramik SM, Osborne RH, Tomellini S (1982) Plio-pleistocene lacustrine stromatolites from lake Turkana, Kenya: Morphology, stratigraphy and stable isotopes. Sediment Geol 32:1–26

    Article  CAS  Google Scholar 

  • Alleon J, Bernard S, Le Guillou C, Marin-Carbonne J, Pont S, Beyssac O, McKeegan KD, Robert F (2016) Molecular preservation of 1.88 Ga Gunflint organic microfossils as a function of temperature and mineralogy. Nat Commun 7:11977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441:714–718

    Article  CAS  PubMed  Google Scholar 

  • Allwood AC, Kamber BS, Walter MR, Burch IW, Kanik I (2010) Trace elements record depositional history of early Archaean stromatolitic carbonate platform. Chem Geol 270:148–163

    Google Scholar 

  • Allwood AC, Grotzinger JP, Knoll AH, Burch IW, Anderson MS, Coleman ML, Kanik I (2009) Controls on development and diversity of Early Archean stromatolites. Proc Natl Acad Sci USA 106:9548–9555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altwegg K, Balsiger H, Bar-Nun A, Berthelier JJ, Bieler A, Bochsler P, Briois C, Calmonte U, Combi MR, Cottin H, De Keyser J, Dhooghe F, Fiethe B, Fuselier SA, Gasc S, Gombosi TI, Hansen KC, Haessig M, Jäckel A, Kopp E, Korth A, Le Roy L, Mall U, Marty B, Mousis O, Owen T, Rème H, Rubin M, Sémon T, Tzou CY, Hunter Waite J, Wurz P (2016) Prebiotic chemicals-amino acid and phosphorus-in the coma of comet 67P/Churyumov-Gerasimenko. Sci Adv 2. https://doi.org/10.1126/sciadv.1600285

    Article  PubMed  PubMed Central  Google Scholar 

  • Amend JP, LaRowe DE, McCollom TM, Shock EL (2013) The energetics of organic synthesis inside and outside the cell. Philos Trans R Soc B 368:20120255

    Article  CAS  Google Scholar 

  • Amend JP, Shock E (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev 25:175–243

    Article  CAS  PubMed  Google Scholar 

  • Anadón P, Utrilla R (1993) Sedimentology and isotope geochemistry of lacustrine carbonates of the Oligocene Campins Basin, north-east Spain. Sedimentology 40:699–720

    Article  Google Scholar 

  • Arp G (1995) Lacustrine bioherms, spring mounds, and marginal carbonates of the Ries-impact-crater (Miocene, Southern Germany). Facies 33:35–89. https://doi.org/10.1007/BF02537444

    Article  Google Scholar 

  • Arp G, Reimer A, Reitner J (2001) Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science 292:1701–1704

    Article  CAS  PubMed  Google Scholar 

  • Aubrey A, Cleaves HJ, Chalmers JH, Skelley AM, Mathies RA, Grunthaner FJ, Ehrenfreund P, Bada JL (2006) Sulfate minerals and organic compounds on Mars. Geology 34:357–360

    Article  CAS  Google Scholar 

  • Aüllo T, Ranchou-Peyruse A, Ollivier B, Magot M (2013) Desulfotomaculum spp. and related Gram-positive sulfate-reducing bacteria in deep subsurface environments. Front Microbiol 4:362

    Article  PubMed  PubMed Central  Google Scholar 

  • Awramik SM (1971) Precambrian columnar stromatolite diversity: reflection of metazoan appearance. Science 1974:825–827

    Article  Google Scholar 

  • Awramik SM (1984) Ancient stromatolites and microbial mats. In: Cohen Y, Castenlolz RW, Halvorson HO (eds) Microbial mats: stromatolites. Alan R. Liss, New York, pp 1–22

    Google Scholar 

  • Awramik SM, Sprinkle J (1999) Proterozoic stromatolites: the first marine evolutionary biota. Hist Biol 13:241–253

    Article  Google Scholar 

  • Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622

    Article  CAS  PubMed  Google Scholar 

  • Bak F, Cypionka H (1987) A novel type of energy metabolism involving fermentation of inorganic sulphur compounds. Nature 326:891–892

    Article  CAS  PubMed  Google Scholar 

  • Bak F, Pfennig N (1987) Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol 147:184–189

    Article  CAS  Google Scholar 

  • Barabesi C, Galizzi A, Mastromei G, Rossi M, Tamburini E, Perito B (2007) Bacillus subtilis Gene cluster involved in calcium carbonate biomineralization. J Bacteriol 189:228–235

    Article  CAS  PubMed  Google Scholar 

  • Bartley JK, Kah LC, Frank TD, Lyons TW (2014) Deep-water microbialites of the Mesoproterozoic Dismal Lakes Group: microbial growth, lithification, and implications for coniform stromatolites. Geobiology 13:15–32

    Article  PubMed  CAS  Google Scholar 

  • Batchelor MT, Burne RV, Henry BI, Jackson MJ (2004) A case for biotic morphogenesis of coniform stromatolites. Physica A Stat Mech Appl 337:319–326

    Article  Google Scholar 

  • Bates RG, Pinching G (1949) Acidic dissociation constant of ammonium ion at 0 °C to 50 °C, and the base strength of ammonia. J Res Natl Bur Stand 42:419–430

    Article  CAS  Google Scholar 

  • Bayman F, Lebrun E, Brugna M, Schoepp-Cotenet B, Giudici-Orticoni M-T, Nitschke W (2002) The redox protein construction kit: pre-last universal common ancestor evolution of energy-conserving enzymes. Philos Trans R Soc Lond 358:267–274

    Article  CAS  Google Scholar 

  • Bekker A, Holland HD, Wang PL, Rumble D III, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120

    Article  CAS  PubMed  Google Scholar 

  • Belkin S, Wirsen CO, Jannasch HW (1985) Biological and abiological sulfur reduction at high temperatures. Appl Environ Microbiol 49:1057–1061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Hania W, Joseph M, Bunk B, Sproer C, Klenk HP, Fardeau ML, Spring S (2016) Characterization of the first cultured representative of a Bacteroidetes clade specialized on the scavenging of cyanobacteria. Environ Microbiol 19:1134–1148

    Article  CAS  Google Scholar 

  • Benzerara K, Menguy N, López-García P, Yoon T-H, Kazmierczak J, Tyliszczak T, Guyot F, Brown GE (2006) Nanoscale detection of organic signatures in carbonate microbialites. Proc Natl Acad Sci 103:9440–9445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertrand-Sarfati J, Moussine-Pouchkine A (1983) Platform-to-basin facies evolution; the carbonates of late Proterozoic (Vendian) Gourma (West Africa). J Sediment Res 53:275–293

    Google Scholar 

  • Beveridge TJ, Fyfe W (1985) Metal fixation by bacterial cell walls. Can J Earth Sci 22:1893–1898

    Article  CAS  Google Scholar 

  • Birgel D, Thiel V, Hinrichs K-U, Elvert M, Campbell KA, Reitner J, Farmer JD, Peckmann J (2006) Lipid biomarker patterns of methane-seep microbialites from the Mesozoic convergent margin of California. Org Geochem 37:1289–1302

    Article  CAS  Google Scholar 

  • Blank CE (2009) Not so old Archaea-the antiquity of biogeochemical processes in the archaeal domain of life. Geobiology 7:495–514

    Article  CAS  PubMed  Google Scholar 

  • Bode HB, Zeggel B, Silakowski B, Wenzel SC, Reichenbach H, Müller R (2003) Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2, 3 (S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Mol Microbiol 47:471–481

    Article  CAS  PubMed  Google Scholar 

  • Bosak T, Greene SE, Newman DK (2007) A likely role for anoxygenic photosynthetic microbes in the formation of ancient stromatolites. Geobiology 5:119–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosak T, Knoll AH, Petroff AP (2013) The meaning of stromatolites. Annu Rev Earth Planet Sci 41:21–44

    Article  CAS  Google Scholar 

  • Bowring SA, Williams IS (1999) Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada. Contrib Mineral Petrol 134:3–16

    Article  CAS  Google Scholar 

  • Bowring SA, Williams IS, Compston W (1989) 3.96 Ga gneisses from the Slave province, Northwest Territories, Canada. Geology 17:971–975

    Article  CAS  Google Scholar 

  • Brandes JA, Boctor NZ, Cody GD, Cooper BA, Hazen RM, Yoder HS Jr (1998) Abiotic nitrogen reduction on the early Earth. Nature 395:365–367

    Article  CAS  PubMed  Google Scholar 

  • Brasier MD, Green OR, Jephcoat AP, Kleppe AK, Van Kranendonk MJ, Lindsay JF, Steele A, Grassineau NV (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416:76–81

    Article  PubMed  Google Scholar 

  • Brasier M, Green O, Lindsay J, Mcloughlin N, Steele A, Stoakes C (2005) Critical testing of Earth’s oldest putative fossil assemblage from the ∼3.5Ga Apex chert, Chinaman Creek, Western Australia. Precambrian Res 140:55–102

    Article  CAS  Google Scholar 

  • Brasier MD, McLoughlin N, Green OR, Wacey D (2006) A fresh look at the fossil evidence for early Archaean cellular life. Philos Trans R Soc B 361:887–902

    Article  CAS  Google Scholar 

  • Brasier MD, Antcliffe J, Saunders M, Wacey D (2015a) Earth’s earliest fossils (3.5– 1.9 Ga): changing the picture with new approaches and new discoveries. Proc Natl Acad Sci USA 112:4859–4864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brasier AT, Rogerson MR, Mercedes-Martin R, Vonhof HB, Reijmer JJG (2015b) A Test of the biogenicity criteria established for microfossils and stromatolites on Quaternary Tufa and Speleothem materials formed in the “Twilight Zone” at Caerwys, UK. Astrobiology 15:883–900

    Article  CAS  PubMed  Google Scholar 

  • Bréhéret J-G, Fourmont A, Macaire J-J, NéGrel P (2008) Microbially mediated carbonates in the Holocene deposits from Sarliève, a small ancient lake of the French Massif Central, testify to the evolution of a restricted environment. Sedimentology 55:557–578

    Article  CAS  Google Scholar 

  • Brochier C, Philippe H (2002) Phylogeny: A non-hyperthermophilic ancestor for Bacteria. Nature 417:244

    Article  CAS  PubMed  Google Scholar 

  • Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036

    Article  CAS  PubMed  Google Scholar 

  • Brocks JJ, Buick R, Summons RE, Logan GA (2003) A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochim Cosmochim Acta 67:4321–4335

    Article  CAS  Google Scholar 

  • Brocks JJ, Love GD, Summons RE, Knoll AH, Logan GA, Bowden SA (2005) Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437:866–870

    Article  CAS  PubMed  Google Scholar 

  • Buick R, Dunlop JSR, Groves DI (1981) Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia. Alcheringa Aust J Palaeontol 5:161–181

    Article  Google Scholar 

  • Bundeleva IA, Shirokova LS, Benezeth P, Pokrovsky OS, Kompantseva EI, Balor S (2012) Calcium carbonate precipitation by anoxygenic phototrophic bacteria. Chem Geol 291:116–131

    Article  CAS  Google Scholar 

  • Burne RV, Moore LS (1987) Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2:241–254

    Article  Google Scholar 

  • Burton AS, Glavin DP, Callahan MP, Dworkin JP, Jenniskens P, Shadad MH (2011) Heterogeneous distributions of amino acids provide evidence of multiple sources within the Almahata Sitta parent body, asteroid 2008 TC3. Meteorit Planet Sci 46:1703–1712

    Article  CAS  Google Scholar 

  • Byerly GR, Lower DR, Walsh MM (1986) Stromatolites from the 3,300–3,500-Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature 319:489–491

    Article  CAS  Google Scholar 

  • Cady SL, Farmer JD (1996) Fossilization processes in siliceous thermal springs: trends in preservation along thermal gradients. In: Bock GR, Goode JA (eds) Evolution of Hydrothermal Ecosystems on Earth (and Mars?), Proceedings of the CIBA Foundation Symposium, 202. Wiley, Chichester, pp 150–173

    Google Scholar 

  • Callow RHT, Battison L, Brasier MD (2011) Diverse microbially induced sedimentary structures from 1Ga lakes of the Diabaig Formation, Torridon Group, northwest Scotland. Sediment Geol 239:117–128

    Article  Google Scholar 

  • Cam N, Benzerara K, Georgelin T, Jaber M, Lambert JF, Poinsot M, Skouri-Panet F, Raimbault E, Cordier L, Jezequel D (2018) Active biomineralization of intracellular carbonates by high Ca uptake in cyanobacteria. Geobiology 16:49–61

    Article  CAS  PubMed  Google Scholar 

  • Camoin G, Casanova J, Rouchy JM, BlancValleron MM, Deconinck JF (1997) Environmental controls on perennial and ephemeral carbonate lakes: the central palaeo-Andean Basin of Bolivia during late Cretaceous to early Tertiary times. Sediment Geol 113:1–26

    Article  Google Scholar 

  • Campbell KA, Guido DM, Gautret P, Foucher F, Ramboz C, Westall F (2015) Geyserite in hot-spring siliceous sinter: window on Earth’s hottest terrestrial (paleo)environment and its extreme life. Earth Sci Rev 148:44–64

    Article  CAS  Google Scholar 

  • Cappelleti M, Zannoni D, Postec A, Ollivier B (2014) Members of the order Thermotogales: from Microbiology to hydrogen production. In: Zannoni D, De Philippis R (eds) Microbial bioenergy: hydrogen production, advances in photosynthesis and respiration including bioenergy and related processes, Chapter 9, vol 38. Springer, Dordrecht, pp 197–224

    Google Scholar 

  • Casaburi A, Piombino P, Nychas G-J, Villani F, Ercolini D (2015) Bacterial populations and the volatilome associated to meat spoilage. Food Microbiol 45:83–102

    Article  CAS  PubMed  Google Scholar 

  • Centeno CM, Legendre P, Beltrán Y, Alcántara-Hernández RJ, Lidström UE, Ashby MN, Falcón LI (2012) Microbialite genetic diversity and composition relate to environmental variables. FEMS Microbiol Ecol 82:724–735

    Article  CAS  PubMed  Google Scholar 

  • Chapelle FH, O’Neill K, Bradley PM, Methé BA, Ciufo SA, Knobel LL, Lovley DR (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312–315

    Article  PubMed  Google Scholar 

  • Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm N (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36 degrees 14 ‘ N, MAR). Chem Geol 191:345–359

    Article  CAS  Google Scholar 

  • Choi O, Sang B-I (2016) Extracellular electron transfer from cathode to microbes: application for biofuel production. Biotechnol Biofuels 9:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cnossen I, Sanz-Forcada J, Favata F, Witasse O, Zegers Z, Arnold NF (2007) Habitat of early life: solar X-ray and UV radiation at Earth’s surface 4–3.5 billion years ago. J Geophys Res 112:E02008

    Article  CAS  Google Scholar 

  • Cockell CS, Raven JA (2004) Zones of photosynthetic potential on Mars and the early Earth. Icarus 169:300–310

    Article  CAS  Google Scholar 

  • Cole JM, Rasbury ET, Montañez IP, Pedone VA, Lanzirotti A, Hanson GN (2004) Petrographic and trace element analysis of uranium-rich tufa calcite, middle Miocene Barstow Formation, California, USA: Uranium-rich tufa deposits, California. Sedimentology 51:433–453

    Article  CAS  Google Scholar 

  • Cooper G, Kimmich N, Belisle W, Sarinana J, Brabham K, Garrel L (2001) Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 414:879–883

    Article  CAS  PubMed  Google Scholar 

  • Corkeron M, Webb GE, Moulds J, Grey K (2012) Discriminating stromatolite formation modes using rare earth element geochemistry: trapping and binding versus in situ precipitation of stromatolites from the Neoproterozoic Bitter Springs Formation, Northern Territory, Australia. Precambrian Res 212–213:194–206

    Article  CAS  Google Scholar 

  • Couradeau E, Benzerara K, Gerard E, Moreira D, Bernard S, Brown GE, Lopez-Garcia P (2012) An early-branching microbialite cyanobacterium forms intracellular carbonates. Science 336:459–462

    Article  CAS  PubMed  Google Scholar 

  • Couradeau E, Benzerara K, Gérard E, Estève I, Moreira D, Tavera R, López-García P (2013) Cyanobacterial calcification in modern microbialites at the submicrometer scale. Biogeosciences 10:5255–5266

    Article  CAS  Google Scholar 

  • Das SS, Tripathi MK (2009) Trace fossils from Talchir carbonate concretions, Giridih basin, Jharkhand. J Earth Syst Sci 118:89–100

    Article  Google Scholar 

  • Dass AV, Hickman-Lewis K, Brack A, Kee TP, Westall F (2016) Stochastic prebiotic chemistry within realistic geological systems. Chem Select 1:4906–4926

    Google Scholar 

  • Davidova MN, Tarasova NB, Mukhitova FK, Karpilova IU (1994) Carbon monoxide in metabolism of anaerobic bacteria. Can J Microbiol 40:417–425

    Article  CAS  PubMed  Google Scholar 

  • De Duve C (1995) Vital Dust. BasicBooks, New York 362 pp

    Google Scholar 

  • de Vries ST, Nijman W, Wijbrans JR, Nelson DR (2006) Stratigraphic continuity and early deformation of the central part of the Coppin Gap Greenstone Belt, Pilbara, Western Australia. Precambrian Res 147:1–27

    Article  CAS  Google Scholar 

  • de Vries ST, Nijman W, de Boer PL (2010) Sedimentary geology of the Palaeoarchaean Buck Ridge (South Africa) and Kittys Gap (Western Australia) volcano-sedimentary complexes. Precambrian Res 183:749–769

    Article  CAS  Google Scholar 

  • De Yoreo JJ, Vekilov PG (2003) Principles of crystal nucleation and growth. Rev Mineral Geochem 54:57–93

    Article  Google Scholar 

  • Di Giulio M (2003) The universal ancestor and the ancestor of bacteria were hyperthermophiles. J Mol Evol 57:721–730

    Article  CAS  PubMed  Google Scholar 

  • Dinh HT, Kuever J, Mußmann M, Hassel AW, Stratmann M, Widdel F (2004) Iron corrosion by novel anaerobic microorganisms. Nature 427:829–832

    Article  CAS  PubMed  Google Scholar 

  • Dodd MS, Papineau D, Grenne T, Slack JF, Rittner M, Pirajno F, O’Neil J, Little CTS (2017) Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543:60–64

    Article  CAS  PubMed  Google Scholar 

  • Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M (2012) Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62:1902–1907

    Article  CAS  PubMed  Google Scholar 

  • Dunagan SP, Turner CE (2004) Regional paleohydrologic and paleoclimatic settings of wetland/lacustrine depositional systems in the Morrison Formation (Upper Jurassic), Western Interior, USA. Sediment Geol 167:269–296

    Article  CAS  Google Scholar 

  • Dunn SR, Valley JW (1992) Calcite–graphite isotope thermometry: a test for polymetamorphism in marble, Tudor gabbro aureole, Ontario, Canada. J Metamorph Geol 10:487–501

    Article  CAS  Google Scholar 

  • Dupraz C, Pattisina R, Verrecchia EP (2006) Translation of energy into morphology: simulation of stromatolite morphospace using a stochastic model. Sediment Geol 185:185–203

    Article  Google Scholar 

  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162

    Article  CAS  Google Scholar 

  • Ehlmann BL, Mustard JF, Murchie SL (2010) Geological setting of serpentine deposits on Mars. Geophys Res Lett 37:L06201

    Article  CAS  Google Scholar 

  • Farquhar J, Zerkle AL, Bekker A (2011) Geological constraints on the origin of oxygenic photosynthesis. Photosynth Res 107:11–36

    Article  CAS  PubMed  Google Scholar 

  • Fauque GD, Barton LL (2012) Hemoproteins in dissimilatory sulfate- and sulfur-reducing prokaryotes. Adv Microb Physiol 60:1–90

    Article  CAS  PubMed  Google Scholar 

  • Fedorchuk ND, Dornbos SQ, Corsetti FA, Isbell JL, Petryshyn VA, Bowles JA, Wilmeth DT (2016) Early non-marine life: evaluating the biogenicity of Mesoproterozoic fluvial-lacustrine stromatolites. Precambrian Res 275:105–118

    Article  CAS  Google Scholar 

  • Feulner G (2012) The faint young Sun problem. Rev Geophys 50:RG2006

    Article  Google Scholar 

  • Finster K (2008) Microbiological disproportionation of inorganic sulfur compounds. J Sulfur Chem 29:281–292

    Article  CAS  Google Scholar 

  • Foucher F, Westall F, Brandstatter F, Demets R, Parnell J, Cockell C, Edwards H, Beny JM, Brack A (2010) Testing the survival of microfossils in artificial martian sedimentary meteorites during entry into Earth’s atmosphere: the STONE 6 experiment. Icarus 207:616–630

    Article  Google Scholar 

  • Fray N, Bardyn A, Cottin H, Altwegg K, Baklouti D, Briois C, Colangeli L, Engrand C, Fischer H, Glasmachers A, Grün E, Haerendel G, Henkel H, Höfner H, Hornung K, Jessberger EK, Koch A, Krüger H, Langevin Y, Lehto H, Lehto K, Le Roy L, Merouane S, Modica P, Orthous-Daunay FR, Paquette J, Raulin F, Rynö J, Schulz R, Silén J, Siljeström S, Steiger W, Stenzel O, Stephan T, Thirkell L, Thomas R, Torkar K, Varmuza K, Wanczek KP, Zaprudin B, Kissel J, Hilchenbach M (2016) High-molecular-weight organic matter in the particles of comet 67P/Churyumov–Gerasimenko. Nature 538:72–74

    Article  CAS  PubMed  Google Scholar 

  • Frederiksen TM, Finster K (2003) Sulfite-oxido-reductase is involved in the oxidation of sulfite in Desulfocapsa sulfoexigens during disproportionation of thiosulfate and elemental sulfur. Biodegradation 14:189–198

    Article  CAS  PubMed  Google Scholar 

  • Frederiksen TM, Finster K (2004) The transformation of inorganic sulfur compounds and the assimilation of organic and inorganic carbon by the sulfur disproportionating bacterium Desulfocapsa sulfoexigens. Antonie Van Leeuwenhoek 85:141–149

    Article  CAS  PubMed  Google Scholar 

  • Furnes H, de Wit M, Staudigel H, Rosing M, Muehlenbachs K (2007) A vestige of Earth’s oldest ophiolite. Science 315:1704–1707

    Article  CAS  PubMed  Google Scholar 

  • Gallagher KL, Kading TJ, Braissant O, Dupraz C, Visscher PT (2012) Inside the alkalinity engine: the role of electron donors in the organomineralization potential of sulfate-reducing bacteria. Geobiology 10:518–530

    Article  CAS  PubMed  Google Scholar 

  • Galvez ME, Beyssac O, Martinez I, Benzerara K, Chaduteau C, Malvoisin B, Malavieille J (2013) Graphite formation by carbonate reduction during subduction. Nat Geosci 6:473–477

    Article  CAS  Google Scholar 

  • García Ruiz JM, Carnerup A, Christy AG, Welham NJ, Hyde ST (2002) Morphology: an ambiguous indicator of biogenicity. Astrobiology 2:353–369

    Article  PubMed  Google Scholar 

  • García Ruiz JM, Hyde ST, Carnerup AM, Christy AG, Kranendonk MJV, Welham NJ (2003) Self-assembled silica-carbonate structures and detection of ancient microfossils. Science 302:1194–1197

    Article  PubMed  CAS  Google Scholar 

  • Garcia JL, Patel BKC, Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic Archaea. Anaerobe 6:205–226

    Article  CAS  PubMed  Google Scholar 

  • Garrity GM, Holt JG (2001) Phylum BIII. Thermodesulfobacteria phyl. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1. Springer, New York/Berlin/Heidelberg, p 389

    Chapter  Google Scholar 

  • Gérard E, Ménez B, Couradeau E, Moreira D, Benzerara K, Tavera R, López-García P (2013) Specific carbonate–microbe interactions in the modern microbialites of Lake Alchichica (Mexico). ISME J 7:1997–2009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giuffre AJ, Hamm LM, Han N, Yoreo JJD, Dove PM (2013) Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies. Proc Natl Acad Sci 110:9261–9266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goesmann F, Rosenbauer H, Bredehöft JH, Cabane M, Ehrenfreund P, Gautier T, Giri C, Krüger H, Le Roy L, MacDermott AJ, McKenna-Lawlor S, Meierhenrich UJ, Muñoz Caro GM, Raulin F, Roll R, Steele A, Steininger H, Sternberg R, Szopa C, Thiemann W, Ulamec S (2015) Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry. Science 349:6247

    Article  CAS  Google Scholar 

  • Golubic S, Seong-Joo L (1999) Early cyanobacterial fossil record: preservation, palaeoenvironments and identification. Eur J Phycol 34:339–348

    Article  Google Scholar 

  • Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435:466–469

    Article  CAS  PubMed  Google Scholar 

  • Gough DO (1981) Solar interior structure and luminosity variations. Sol Phys 74:21–34

    Article  CAS  Google Scholar 

  • Grigné C, Labrosse S, Tackley PJ (2005) Convective heat transfer as a function of wavelength: implications for the cooling of the Earth. J Geophys Res 110(B3):B03409

    Article  Google Scholar 

  • Grotzinger JP (1989) Facies and evolution of Precambrian carbonate deposition systems: emergence of the modern platform archetype. In: Crevello PD, Wilson JL, Sarg JF, Read JF (eds) Controls on carbonate platform and basin development, Special Publication, vol 44. Society of economic Paleontologists and Mineralogists, Tulsa, pp 79–106

    Chapter  Google Scholar 

  • Grotzinger JP (1990) Geochemical model for Proterozoic stromatolite decline. Am J Sci 290-A:80–243

    Google Scholar 

  • Grotzinger JP, Kasting JF (1993) New constraints on Precambrian ocean composition. J Geol 101:235–243

    Article  CAS  PubMed  Google Scholar 

  • Grotzinger JP, Knoll AH (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu Rev Earth planet Sci 27:313–358

    Article  CAS  PubMed  Google Scholar 

  • Guida BS, Garcia-Pichel F (2016) Extreme cellular adaptations and cell differentiation required by a cyanobacterium for carbonate excavation. Proc Natl Acad Sci USA 113:5712–5717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall JD (1883) Cryptozoon (proliferum) N. G. (an sp). New York State Mus Ann Rept 36

    Google Scholar 

  • Harrison TM, Blichert-Toft J, Müller W, Albarede F, Holden P, Mojzsis SJ (2005) Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga. Science 310:1947–1950

    Article  CAS  PubMed  Google Scholar 

  • Hatchikian CE, Ollivier B, Garcia J-L (2001) Class I. Thermodesulfobacteria class. nov., Order I.Thermodesulfobacteriales ord. nov., Family I. Thermodesulfobacteriaceae fam. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1. Springer, New York/Berlin/Heidelberg, pp 389–390

    Google Scholar 

  • Hazen RM, Sverjensky DA (2010) Mineral surfaces, geochemical complexities, and the origins of life. Cold Spring Harb Perspect Biol 2:a002162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hedderich R, Klimmek O, Kröger A, Dirmeier R, Keller M, Stetter KO (1999) Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol Rev 22:353–381

    Article  Google Scholar 

  • Heubeck C (2009) An early ecosystem of Archean tidal microbial mats (Moodies Group, South Africa, ca. 3.2 Ga). Geology 37:931–934

    Article  Google Scholar 

  • Hofmann HJ (1973) Stromatolites: characteristics and utility. Earth Sci Rev 9:339–373

    Article  Google Scholar 

  • Hofmann A, Harris C (2008) Silica alteration zones in the Barberton Greenstone Belt: a window into subseafloor processes 3.5–3.3 Ga ago. Chem Geol 257:221–239

    Article  CAS  Google Scholar 

  • Hofmann H, Grey K, Hickman A, Thorpe R (1999) Origin of 3.45 Ga coniform stromatolites in the Warrawoona Group, Western Australia. Geol Soc Am Bull 111:1256–1262

    Article  Google Scholar 

  • Homann M, Heubeck C, Airo A, Tice MM (2015) Morphological adaptations of 3.22 Ga-old tufted microbial mats to Archean coastal habitats (Moodies Group, Barberton Greenstone Belt, South Africa). Precambrian Res 266:47–64

    Article  CAS  Google Scholar 

  • Homann M, Heubeck C, Bontognali TTR, Bouvier A-S, Baumgartner LP, Airo A (2016) Evidence for cavity-dwelling microbial life in 3.22 Ga tidal deposits. Geology 44:51–54

    Article  CAS  Google Scholar 

  • Jahnert RJ, Collins LB (2012) Characteristics, distribution and morphogenesis of subtidal microbial systems in Shark Bay, Australia. Mar Geol 303–306:115–136

    Article  CAS  Google Scholar 

  • Jahnke LL, Eder W, Huber R, Hope JM, Hinrichs K-U, Hayes JM, Des Marais DJ, Cady SL, Summons RE (2001) Signature lipids and stable carbon isotope analyses of Octopus Spring hyperthermophilic communities compared with those of Aquificales representatives. Appl Environ Microbiol 67:5179–5189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javaux EJ, Marshall CP, Bekker A (2010) Organic-walled microfossils in 3.2- billion-year-old shallow-marine siliciclastic deposits. Nature 463:934–938

    Article  CAS  PubMed  Google Scholar 

  • Jeoung J-H, Fesseler J, Goetzl S, Dobbek H (2014) Carbon monoxide. Toxic gas and fuel for anaerobes and aerobes: carbon monoxide dehydrogenases. Met Ions Life Sci 14:37–69

    Article  CAS  PubMed  Google Scholar 

  • Johnson AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL (2008) The Miller volcanic spark discharge experiment. Science 322:404

    Article  CAS  PubMed  Google Scholar 

  • Jones B, Renaut RW, Rosen MR (2001) Taphonomy of silicified filamentous microbes—implications for identification. PALAIOS 16:580–592

    Article  Google Scholar 

  • Kah LC, Grotzinger JP (1992) Early Proterozoic (1.9 Ga) thrombolites of the Rocknest Formation, Northwest Territories, Canada. PALAIOS 7:305

    Article  Google Scholar 

  • Kalkovsky E (1908) Oolith und stromatolith im norddeutschen Buntsandstein. Zeitschrift der Deutschen Geologischen Gesellschaft 60:68–125

    Google Scholar 

  • Kamber BS (2015) The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic. Precambrian Res 258:48–82

    Article  CAS  Google Scholar 

  • Kamber BS, Webb GE (2001) The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history. Geochim Cosmochim Acta 65:2509–2525

    Article  CAS  Google Scholar 

  • Kamber BS, Bolhar R, Webb GE (2004) Geochemistry of late Archaean stromatolites from Zimbabwe: evidence for microbial life in restricted epicontinental seas. Precambrian Res 132:379–399

    Article  CAS  Google Scholar 

  • Kardar M, Parisi G, Zhang Y-C (1986) Dynamic scaling of growing interfaces. Phys Rev Lett 56:889–892

    Article  CAS  PubMed  Google Scholar 

  • Kasting JF (1982) Stability of ammonia in the primitive terrestrial atmosphere. J Geophys Res 87:3091–3098

    Article  CAS  Google Scholar 

  • Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926

    Article  CAS  PubMed  Google Scholar 

  • Kasting JF, Catling D (2003) Evolution of a habitable planet. Annu Rev Astron Astrophys 41:429–463

    Article  CAS  Google Scholar 

  • Khodadad CLM, Foster JS (2012) Metagenomic and metabolic profiling of nonlithifying and lithifying stromatolitic mats of Highborne Cay, The Bahamas. PLoS One 7:e38229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knauth LP, Lowe DR (2003) High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Bull Geol Soc Am 115:566–580

    Article  CAS  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    Article  CAS  PubMed  Google Scholar 

  • Knoll AH, Carroll SB (1999) Early animal evolution: emerging views from comparative biology and geology. Science 284:2129–2137

    Article  CAS  PubMed  Google Scholar 

  • Knoll AH, Fairchild IJ, Swett K (1993) Calcified microbes in Neoproterozoic carbonates; implications for our understanding of the Proterozoic/Cambrian transition. PALAIOS 8:512–525

    Article  CAS  PubMed  Google Scholar 

  • Knoll AH, Bergmann KD, Strauss JV (2016) Life: the first two billion years. Philos Trans R Soc B-Biol Sci 371:20150493

    Article  Google Scholar 

  • Konn C, Charlou JL, Donval JP, Holm NG, Dehairs F, Bouillon S (2009) Hydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted vents. Chem Geol 258:299–314

    Article  CAS  Google Scholar 

  • Krämer M, Cypionka H (1989) Sulfate formation via ATP sulfurylase in thiosulfate- and sulfite-disproportionating bacteria. Arch Microbiol 151:232–237

    Article  Google Scholar 

  • Krumbein WE (1983) Stromatolites – the challenge of a term in space and time. Precambrian Res 20:493–531

    Article  Google Scholar 

  • Kusakabe M, Komoda Y, Takano B, Abiko T (2000) Sulfur isotopics effects in the disproportionation reaction of sulfur dioxide in hydrothermal fluids: implications of the Δ 34S variations of dissolved bisulfate and elemental sulfur from active crater lakes. J Volcanol Geotherm Res 97:287–307

    Article  CAS  Google Scholar 

  • Lepot K, Benzerara K, Rividi N, Cotte M, Brown GE, Philippot P (2009) Organic matter heterogeneities in 2.72Ga stromatolites: alteration versus preservation by sulfur incorporation. Geochim Cosmochim Acta 73:6579–6599

    Article  CAS  Google Scholar 

  • Lindqvist JK (1994) Lacustrine stromatolites and oncoids: Manuherikia Group (MIOCENE), New Zealand. In: Bertrand-Sarfati J, Monty C (eds) Phanerozoic Stromatolites II. Springer, Dordrecht, pp 227–254

    Chapter  Google Scholar 

  • Link MH, Osborne RH, Awramik SM (1978) Lacustrine stromatolites and associated sediments of the Pliocene Ridge Route Formation, Ridge Basin, California. J Sediment Res 48:143–157

    CAS  Google Scholar 

  • Liu Y, Beer LL, Whitman WB (2012) Methanogens: a window into ancient sulfur metabolism. Trends Microbiol 20:251–258

    Article  CAS  PubMed  Google Scholar 

  • Logan B (1961) Cryptozoon and associate stromatolites from the recent, Shark Bay, Western-Australia. J Geol 69:517–533

    Article  Google Scholar 

  • López-García P, Kazmierczak J, Benzerara K, Kempe S, Guyot F, Moreira D (2005) Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake Van, Turkey. Extremophiles 9:263–274

    Article  PubMed  CAS  Google Scholar 

  • Lowe DR (1980) Stromatolites 3,400-Myr old from the Archean of Western Australia. Nature 284:441–443

    Article  Google Scholar 

  • Lowe DR (1983) Restricted shallow water sedimentation of 3.4 Byr-old stromatolitic and evaporitic strata of the Strelley Pool Chert, Pilbara block, Western Australia. Precambrian Res 19:239–283

    Article  Google Scholar 

  • Lowe DR (1994) Abiological origin of described stromatolites older than 3.2 Ga. Geology 22:387–390

    Article  CAS  PubMed  Google Scholar 

  • Lowe DR, Byerly GR (1999) Stratigraphy of the west-central part of the Barbeton Greenstone Belt, South Africa. Special Paper of the Geol Amer Soc 329:1–36

    Google Scholar 

  • Manhes G, Allègre CJ, Dupré B, Hamelin B (1980) Lead isotope study of basic-ultrabasic layered complexes: speculations about the age of the earth and primitive mantle characteristics. Earth Planet Sci Lett 47:370–382

    Article  CAS  Google Scholar 

  • Mardanov AV, Beletsky AV, Kadnikov VV, Slobodkin AI, Ravin NV (2016) Genome analysis of Thermosulfurimonas dismutans, the first thermophilic sulfur-disproportionating bacterium of the phylum Thermodesulfobacteria. Front Microbiol 7. https://doi.org/10.3389/fmicb2016.00950

  • Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41

    Article  CAS  PubMed  Google Scholar 

  • Marvasi M, Visscher PT, Perito B, Mastromei G, Casillas-Martínez L (2010) Physiological requirements for carbonate precipitation during biofilm development of Bacillus subtilis etfA mutant. FEMS Microbiol Ecol 71:341–350

    Article  CAS  PubMed  Google Scholar 

  • Maurette M, Brack A (2006) Cometary petroleum in Hadean time? Meteorit Planet Sci 41:5247

    Google Scholar 

  • McCaffrey VP, Zellner NEB, Waun CM, Bennett ER, Earl EK (2014) Reactivity and survivability of glycolaldehyde in simulated meteorite impact experiments. Orig Life Evol Biosph 44:29–42

    Article  CAS  PubMed  Google Scholar 

  • McCollom TM (2011) What can carbon isotopes tell us about sources of reduced carbon in rocks from the Early Earth. In: Golding SD, Glikson M (eds) Earliest life on Earth: habitats, environments and methods of detection. Springer, Dordrecht, pp 291–311

    Chapter  Google Scholar 

  • McCollom TM, Seewald JS (2007) Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem Rev 107:382–401

    Article  CAS  PubMed  Google Scholar 

  • Merz MU (1992) The biology of carbonate precipitation by cyanobacteria. Facies 26:81–101

    Article  Google Scholar 

  • Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, Knittel K, Gieseke A, Peterknecht K, Pape T, Boetius A, Amann R, Jorgensen BB, Widdel F, Peckmann J, Pimenov NV, Gulin MB (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297:1013–1015

    Article  CAS  PubMed  Google Scholar 

  • Miller SL (1953) The production of amino acids under possible primitive Earth conditions. Science 117:528–529

    Article  CAS  PubMed  Google Scholar 

  • Miller AG, Colman B (1980) Evidence for HCO3 transport by the blue-green alga (Cyanobacterium) Coccochloris peniocystis. Plant Physiol 65:397–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller HM, Mayhew LE, Ellison ET, Kelemen P, Kubo M, Templeton AS (2017) Low temperature hydrogen production during experimental hydration of partially-serpentinized dunite. Geochim Cosmochim Acta 209:161–183

    Article  CAS  Google Scholar 

  • Milroy PG, Wright VP (2002) Fabrics, facies control and diagenesis of lacustrine ooids and associated grains from the Upper Triassic, southwest England. Geol J 37:35–53

    Article  CAS  Google Scholar 

  • Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MMM (2012) Zero-valent Sulphur is a key intermediate in marine methane oxidation. Nature 49:541–546

    Article  CAS  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  CAS  PubMed  Google Scholar 

  • Miyakawa S, Yamanashi H, Kobayashi K, Cleaves HJ, Miller SL (2002) Prebiotic synthesis from CO atmospheres: implications for the origins of life. Proc Natl Acad Sci USA 99:14628–14631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moissette P, Cornée J-J, Mannaï-Tayech B, Rabhi M, André J-P, Koskeridou E, Méon H (2010) The western edge of the Mediterranean Pelagian Platform: a Messinian mixed siliciclastic–carbonate ramp in northern Tunisia. Palaeogeogr Palaeoclimatol Palaeoecol 285:85–103

    Article  Google Scholar 

  • Monty CLV, Westall F, van der Gaast S (1991) Diagenesis of siliceous particles in subantarctic sediments, ODP Leg 114, Hole 699a: possible microbial mediation. In: Ciesielski PF, Kristoffersen Y, Clement B, Moore TC (eds) Proceedings of the ODP scientific research, vol 114. ODP, College Station, pp 685–710

    Google Scholar 

  • Mörsdorf G, Frunzke K, Gadkari D, Meyer O (1992) Microbial growth on carbon monoxide. Biodegradation 3:61–82

    Article  Google Scholar 

  • Noffke N (2009) The criteria for the biogenicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy deposits. Earth Sci Rev 96:173–180

    Article  CAS  Google Scholar 

  • Noffke N (2010) Geobiology: microbial mats in sandy deposits from the Archaean Era to today. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Noffke N, Eriksson KA, Hazen RM, Simpson EL (2006) A new window into Archean life: Microbial mats in Earth’s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34:253–256

    Article  CAS  Google Scholar 

  • Nuevo M, Bredehöft JH, Meierhenrich UJ, d’Hendecourt L, Thiemann WH (2010) Urea, glycolic acid, and glycerol in an organic residue produced by ultraviolet irradiation of interstellar/pre-cometary ice analogs. Astrobiology 10:245–256

    Article  CAS  PubMed  Google Scholar 

  • Nutman AP, Bennett VC, Friend CRL, Van Kranendonk MJ, Chivas AR (2016) Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537:535–538

    Article  CAS  PubMed  Google Scholar 

  • Obraztsova AY, Francis CA, Tebo BM (2002) Sulfur disproportionation by the facultative anaerobe Pantoea agglomerans SP1 as a mechanism for chromium (VI) reduction. Geomicrobiol J 19:121–132

    Article  CAS  Google Scholar 

  • Ollivier B, Guyot F (2009) Sulfate-reducing bacteria: a deep biosphere-early life connection ? Environ Microbiol Rep (Crystal Ball 2009) 1:14–16

    Google Scholar 

  • Onstott TC (2016) Deep life: the hunt for the hidden biology of earth, Mars, and beyond. Princeton University Press, 512 pp

    Google Scholar 

  • Orange F, Westall F, Disnar J-R, Prieur D, Bienvenu N, Le Romance M, Défarge C (2009) Experimental silicification of the extremophilic Archaea Pyrococcus abyssi and Methanocaldococcus jannaschii: applications in the search for evidence of life in early Earth and extraterrestrial rocks. Geobiology 7:403–418

    Article  CAS  PubMed  Google Scholar 

  • Orange F, Disnar JR, Westall F, Prieur D, Baillif P (2011) Metal binding by the early Earth analogue microorganism, archaea Methanocaldococcus jannaschii and its effects on silicification. Palaeontology 54:953–964

    Article  Google Scholar 

  • Orange F, Disnar J-P, Gautret P, Westall F, Bienvenu N, Lottier N, Prieur D (2012) Preservation and evolution of organic matter during experimental fossilisation of the hyperthermophilic archaea Methanocaldococcus jannaschii. Orig Life Evol Biosph 42:587–609

    Article  CAS  PubMed  Google Scholar 

  • Orberger B, Rouchon V, Westall F, de Vries ST, Wagner C, Pinti DL (2006) Protoliths and micro-environments of some Archean Cherts (Pilbara, Australia). In: Reimold WU, Gibson R (eds.) Processes on the early Earth. Geological Society of America, special paper Boulder 405: 132–154

    Google Scholar 

  • Parshina SN, Sipma J, Nakashimada Y, Meint Henstra A, Smidt H, Lysenko AM, Lens PNL, Lettinga G, Stams AJM (2005) Desulfotomaculum carboxydivorans sp. nov., a novel sulfate-reducing bacterium capable of growth at 100% CO. Int J Syst Evol Microbiol 55:2159–2165

    Article  CAS  PubMed  Google Scholar 

  • Pasini V, Brunelli D, Dumas P, Sandt C, Frederick J, Benzerara BS, Ménez B (2013) Low temperature hydrothermal oil and associated biological precursors in serpentinites from Mid-Ocean Ridge. Lithos 178:84–95

    Article  CAS  Google Scholar 

  • Patterson C, Tilton G, Inghram M (1955) Age of the Earth. Science 121:69–75

    Article  CAS  PubMed  Google Scholar 

  • Pflug HD, Jaeschke-Boyer H (1979) Combined structural and chemical analysis of 3,800-Myr-old microfossils. Nature 280:483–448

    Article  CAS  Google Scholar 

  • Philippot P, Van Zuiten M, Lepot K, Thomazo C, Farquhar J, Van Kranendonk MJ (2007) Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science 317:1534–1537

    Article  CAS  PubMed  Google Scholar 

  • Pikuta EV, Hoover RB, Bej AK, Marsi D, Whitman WB, Cleland D, Krader P (2003) Desulfonatronum thiosdismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth. Int J Syst Evol Microbiol 53:1327–1332

    Article  CAS  Google Scholar 

  • Pinti DL (2005) In: Gargaud M, Barbier B, Martin H, Reisse J (eds) Lectures in astrobiology, Advances in Astrobiology and Biogeophysics. Springer, Berlin, pp 83–107

    Chapter  Google Scholar 

  • Poser A, Lohmayer R, Vogt C, Knoeller K, Planer-Friedrich B, Sorokin D, Richnow H-H, Finster K (2013) Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes. Extremophiles 17:1003–1012

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta 1784:1873–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–1104

    Article  CAS  PubMed  Google Scholar 

  • Reid RP, James NP, Macintyre IG, Dupraz CP, Burne RV (2003) Shark Bay stromatolites: microfabrics and reinterpretation of origins. Facies 49:299–324

    Google Scholar 

  • Rettberg P, Anesio AM, Baker VR, Baross JA, Cady SL, Detsis E, Foreman CM, Hauber E, Ori GG, Pearce DA, Renno NO, Ruvkun G, Sattler B, Saunders MP, Smith DH, Wagner D, Westall F (2016) Planetary protection and Mars special regions--a suggestion for updating the definition. Astrobiology 16:119–125

    Article  PubMed  Google Scholar 

  • Riding R (1991) Classification of microbial carbonates. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin, pp 21–51

    Chapter  Google Scholar 

  • Riding R (1994) Evolution of algal and cyanobacterial calcification. In: Bengtson S (ed) Early life on Earth. Columbia University Press, New York, pp 426–438

    Google Scholar 

  • Riding R (2006a) Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sediment Geol 185:229–238

    Article  Google Scholar 

  • Riding R (2006b) Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic-Cambrian changes in atmospheric composition. Geobiology 4:299–316

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Robert F, Chaussidon M (2006) A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature 443:969–972

    Article  CAS  PubMed  Google Scholar 

  • Rosing MT (1999) 13C-Depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west Greenland. Science 283:674–676

    Article  CAS  PubMed  Google Scholar 

  • Russel MJ, Nitschke W, Branscomb E (2013) The inevitable journey to being. Philos Trans R Soc 368:20120254

    Article  CAS  Google Scholar 

  • Sagan C, Mullen G (1972) Earth and Mars: evolution of atmospheres and surface temperatures. Science 177:52–56

    Article  CAS  PubMed  Google Scholar 

  • Saghaï A, Zivanovic Y, Zeyen N, Moreira D, Benzerara K, Deschamps P, Bertolino P, Ragon M, Tavera R, López-Archilla AI, López-García P (2015) Metagenome-based diversity analyses suggest a significant contribution of non-cyanobacterial lineages to carbonate precipitation in modern microbialites. Front Microbiol 6:797. https://doi.org/10.3389/fmicb.2015.00797

    Article  PubMed  PubMed Central  Google Scholar 

  • Saghaï A, Zivanovic Y, Moreira D, Benzerara K, Bertolino P, Ragon M, Tavera R, López-Archilla AI, López- García P (2016) Comparative metagenomics unveils functions and genome features of microbialite-associated communities along a depth gradient. Environ Microbiol 18:4990–5004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salama W, El Aref MM, Gaupp R (2013) Mineral evolution and processes of ferruginous microbialite accretion – an example from the Middle Eocene stromatolitic and ooidal ironstones of the Bahariya Depression, Western Desert, Egypt. Geobiology 11:15–28

    Article  CAS  PubMed  Google Scholar 

  • Sanz-Montero ME, RodríGuez-Aranda JP, GarcíA Del Cura MA (2008) Dolomite-silica stromatolites in Miocene lacustrine deposits from the Duero Basin, Spain: the role of organotemplates in the precipitation of dolomite: Dolomite-silica stromatolites in Miocene lacustrine deposits. Sedimentology 55:729–750

    Article  CAS  Google Scholar 

  • Schidlowski M (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Res 106:117–134

    Article  CAS  Google Scholar 

  • Schopf JW (1993) Microfossils of the early Archean apex chert: new evidence of the antiquity of life. Science 260:640–646

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW (2011) The paleobiological record of photosynthesis. Photosynth Res 107:87–101

    Article  CAS  Google Scholar 

  • Schopf JW, Packer BM (1987) Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237:70–73

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Agresti DG, Wdowiak TJ, Czaja AD (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 416:73–76

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Sugitani K, Walter MR (2010) Precambrian microbe-like pseudofossils: a promising solution to the problem. Precambrian Res 179:191–205

    Article  CAS  Google Scholar 

  • Seard C, Camoin G, Rouchy J-M, Virgone A (2013) Composition, structure and evolution of a lacustrine carbonate margin dominated by microbialites: Case study from the Green River formation (Eocene; Wyoming, USA). Palaeogeogr Palaeoclimatol Palaeoecol 381–382:128–144

    Article  Google Scholar 

  • Semikhatov MA, Gebelein CD, Cloud P, Awramik SM, Benmore WC (1979) Stromatolite morphogenesis – progress and problems. Can J Earth Sci 16:992–1015

    Article  Google Scholar 

  • Sessions AL, Doughty DM, Welander PV, Summons RE, Newman DK (2009) The continuing puzzle of the great oxidation event. Curr Biol 19:567–574

    Article  CAS  Google Scholar 

  • Shen Y, Bulck R, Canfield DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410:77–80

    Article  CAS  PubMed  Google Scholar 

  • Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, de Marsac NT, Rippka R, others (2013) Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci 110:1053–1058

    Article  CAS  PubMed  Google Scholar 

  • Shih PM, Hemp J, Ward LM, Matzke NJ, Fischer WW (2017) Crown group Oxyphotobacteria postdate the rise of oxygen. Geobiology 15:19–29

    Article  CAS  PubMed  Google Scholar 

  • Shock EL, McCollom TM, Schulte MD (1998) The emergence of metabolism from within hydrothermal systems. In: Wiegel J, Adams MWW (eds) Thermophiles: the keys to molecular evolution and the origin of life. Taylor & Francis, London, pp 59–76

    Google Scholar 

  • Sleep NH, Zahnle KJ, Kasting JF, Morowitz HJ (1989) Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342:139–142

    Article  CAS  PubMed  Google Scholar 

  • Sleep NH, Zahnle K, Neuhoff PS (2001) Initiation of clement surface conditions on the early Earth. Proc Natl Acad Sci 98:3666–3672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slobodkin AI, Reysenbach A-L, Slobodkina GB, Baslerov RV, Kostrikina NA, Wagner ID, Bonch-Osmolovskaya EA (2012) Thermosulfurimonas dismutans gen. nov., sp. nov., an extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent. Int J Syst Environ Microbiol 62:2565–2571

    Article  CAS  Google Scholar 

  • Slobodkin AI, Reysenbach A-L, Slobodkina GB, Kolganova TV, Kostrikina NA, Bonch-Osmolovskaya EA (2013) Dissulfuribacter thermophilus gen. nov., sp. nov., a thermophilic, autotrophic, sulfur-disproportionating, deeply branching deltaproteobacterium from a deep-sea hydrothermal vent. Int J Syst Environ Microbiol 63:1967–1971

    Article  CAS  Google Scholar 

  • Slobodkin AI, Slobodkina GB, Panteleeva AN, Chernyh NA, Novikov AA, Bonch-Osmolovskaya EA (2016) Dissulfurimicrobium hydrothermale gen. nov., sp. nov., a thermophilic, autotrophic, sulfur-disproportionating deltaproteobacterium isolated from a hydrothermal pond. Int J Syst Environ Microbiol 66:1022–1026

    Article  CAS  Google Scholar 

  • Slobodkina GB, Kolganova TV, Kopitsyn DS, Viryasov MB, Bonch-Osmolovskaya EA, Slobodkin AI (2016) Dissulfurirhabdus thermomarina gen. nov., sp. nov., a thermophilic, autotrophic, sulfite-reducing and disproportionating deltaproteobacterium isolated from a shallow-sea hydrothermal vent. Int J Syst Evol Microbiol 66:2515–2519

    Article  CAS  PubMed  Google Scholar 

  • Smith JW (2000) Isotopic fractionations accompanying sulfur hydrolysis. Geochem J 34:95–99

    Article  CAS  Google Scholar 

  • Sorin L, Anton V, Miryam B-M, Roi P, Amos F (2010) Late Pleistocene palaeoclimatic and palaeoenvironmental reconstruction of the Dead Sea area (Israel), based on speleothems and cave stromatolites. Quat Sci Rev 29:1201–1211

    Article  Google Scholar 

  • Sorokin DY, Tourova TP, Henstra AM, Stams AJM, Galinski EA, Muyzer G (2008) Sulfidogenesis under extremely haloalkaline conditions by Desulfonatrospira thiodismutans gen. nov., sp., nov., and Desulfonatrospira delicata sp. nov., a novel lineage of Deltaproteobacteria from hypersaline soda lakes. Microbiology 154:1444–1453

    Article  CAS  PubMed  Google Scholar 

  • Sorokin DY, Tourova TP, Dektova EN, Kolganova TV, Galinski EA, Muyzer G (2011) Culturable diversity of lithotrophic haloalkaliphilic sulfate-reducing bacteria in soda lakes and the description of Desulfonatronum thioautotrophicum sp. nov., Desulfonatronum thiautrophicum sp. nov., Desulfonatronovibrio thiodismutans sp., nov., and Desulfonatronovibrio magnus sp. nov. Extremophiles 15:391–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577

    Article  CAS  PubMed  Google Scholar 

  • Steel JH (1825) A description of the olitic formation lately discovered in the Country of Sratoga and State of New York. Am J Sci 9:16–19

    Google Scholar 

  • Stern JC, Sutter B, Freissinet C, Navarro-González R, McKay CP, Archer PD Jr, Buch A, Brunner AE, Coll P, Eigenbrode JL, Fairen AG, Franz HB, Glavin DP, Kashyap S, McAdam AC, Ming DW, Steele A, Szopa C, Wray JJ, Martín-Torres FJ, Zorzano MP, Conrad PG, Mahaffy PR, Science Team MSL (2015) Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars. Proc Natl Acad Sci 112:4245–4250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stetter KO, Gaag G (1983) Reduction of molecular Sulphur by methanogenic bacteria. Nature 305:309–311

    Article  CAS  Google Scholar 

  • Stetter KO, Segerer A, Zillig W, Huber G, Fiala G, Huber R, König H (1986) Extremely thermophilic sulfur-metabolizing archaebacterial. Syst Appl Microbiol 7:393–397

    Article  CAS  Google Scholar 

  • Stüeken EE, Buick R, Schauer AJ (2015) Nitrogen isotope evidence for alkaline lakes on late Archean continents. Earth Planet Sci Lett 411:1–10

    Article  CAS  Google Scholar 

  • Summons RE, Jahnke LL, Hope JM, Logan GAN (1999) Molecular fossils for cyanobacteria recording a geological history of oxygenic photosynthesis. Nature 400:554–557

    Article  CAS  PubMed  Google Scholar 

  • Tartèse R, Chaussidon M, Gurenko A, Delarue F, Robert F (2017) Warm Archean oceans reconstructed from oxygen isotope composition of early-life remnants. Geochem Perspect Lett 3:55–65

    Article  Google Scholar 

  • Thamdrup B, Finster K, Hansen JW, Bak F (1993) Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol 59:101–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomazo C, Pinti DL, Busigny V, Ader M, Hashizume K, Philippot P (2009) Biological activity and the Earth’s surface evolution: insights from carbon, sulfur, nitrogen and iron stable isotopes in the rock record. C R Palevol 8:665–678

    Article  Google Scholar 

  • Thomazo C, Ader M, Philippot P (2011) Extreme 15N-enrichments in 2.72-Gyr-old sediments: evidence for a turning point in the nitrogen cycle: Extreme 15N-enrichments in 2.72-Gyr-old sediments. Geobiology 9:107–120

    Article  CAS  PubMed  Google Scholar 

  • Thompson DL, Stilwell JD, Hall M (2015) Lacustrine carbonate reservoirs from Early Cretaceous rift lakes of Western Gondwana: pre-salt coquinas of Brazil and West Africa. Gondwana Res 28:26–51

    Article  Google Scholar 

  • Tice MM (2009) Environmental controls on photosynthetic microbial mat distribution and morphogenesis on a 3.42 Ga clastic-starved platform. Astrobiology 9:989–1000

    Article  CAS  PubMed  Google Scholar 

  • Tice MM, Lowe DR (2004) Photosynthetic microbial mats in the 3416-Myr-old ocean. Nature 431:549–552

    Article  CAS  PubMed  Google Scholar 

  • Timmers PHA, Welte CU, Koehorst JJ, Plugge CM, Jetten MSM, Stams AJM (2017) Reverse methanogenesis and respiration in methanotrophic Archaea. Archaea 1654237, 22 pp

    Google Scholar 

  • Turcotte DL (1980) On the thermal evolution of the Earth. EPSL 48:53–58

    Article  Google Scholar 

  • Van den Boorn SHJM, Van Bergen MJ, Nijman W, Strauss H (2007) Dual role of seawater and hydrothermal fluids in Early Archean chert formation: evidence from silicon isotopes. Geology 35:939–942

    Article  CAS  Google Scholar 

  • Van Kranendonk MJ, Webb GE, Kamber BS (2003) Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean ocean. Geobiology 1:91–108

    Article  Google Scholar 

  • Van Kranendonk M, Philippot P, Lepot K, Bodorkos S, Pirajno F (2008) Geological setting of Earth’s oldest fossils in the ca. 3.5Ga Dresser Formation, Pilbara Craton, Western Australia. Precambrian Res 167:93–124

    Article  CAS  Google Scholar 

  • Verrecchia EP (1996) Morphometry of microstromatolites in calcrete laminar crusts and a fractal model of their growth. Math Geol 28:87–109

    Article  CAS  Google Scholar 

  • Verrecchia E, Freytet P, Verrecchia K, Dumont J (1995) Spherulites in calcrete laminar crusts – biogenic CaCO3 precipitation. J Sediment Res Sect A 65:690–700

    Google Scholar 

  • Visscher PT, Stolz JF (2005) Microbial mats as bioreactors: populations, processes, and products. Palaeogeor Palaeoclimatol Palaeoecol 219:87–100. https://doi.org/10.1016/j.palaeo.2004.10.016

    Article  Google Scholar 

  • Wacey D (2009) Early life on earth, a practical guide. In: Landman NH, Harries PJ (eds) Topics in geobiology, vol 31. Springer, Heidelberg

    Google Scholar 

  • Wacey D, Kilburn MR, Saunders M, Cliff J, Brasier MD (2011) Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat Geosci 4:698–702

    Article  CAS  Google Scholar 

  • Wacey D, Battison L, Garwood RJ, Hickman-Lewis K, Brasier MD (2016a) High-resolution techniques for the study of the morphology and chemistry of Proterozoic microfossils. In: Brasier AT, McIlroy D, McLoughlin N (eds) Earth system evolution and early life: a celebration of the work of Martin Brasier, Geological Society of London Special Publication, vol 448. The Geological Society, London, pp 81–104

    Google Scholar 

  • Wacey D, Saunders M, Kong C, Brasier AT, Brasier MD (2016b) 3.46 Ga Apex chert ‘microfossils’ reinterpreted as mineral artefacts produced during phyllosilicate exfoliation. Gondwana Res 36:296–313

    Article  CAS  Google Scholar 

  • Walsh MM, Lowe DR (1999) Modes of accumulation of carbonaceous matter in the early Archaean: a petrographic and geochemical study of the carbonaceous cherts of the Swaziland Supergroup. In: Lowe DR, Byerly GR (eds) Geologic evolution of the Barberton Greenstone Belt, South Africa, Special Paper, vol 329. Geological Society of America, Boulder, pp 115–132

    Google Scholar 

  • Walter MR, Heys GR (1985) Links between the rise of the Metazoa and the decline of stromatolites. Precambrian Res 29:149–174

    Article  Google Scholar 

  • Walter MR, Buick R, Dunlop JSR (1980) Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia. Nature 284:443–445

    Article  Google Scholar 

  • Walter MR, Grotzinger JP, Schopf JW (1992) Proterozoic stromatolites. In: Schopf JW, Klein C (eds) The Proterozoic Biosphere, A multidisciplinary study. Cambridge University Press, Cambridge, p 254

    Google Scholar 

  • Wattinne A, Vennin E, De Wever P (2003) Evolution d’un environnement carbonaté lacustre à stromatolithes, par l’approche paléo-écologique (carrière de Montaigu-le-Blin, bassin des Limagnes, Allier, France). Bull Soc Géol Fr 174:243–260

    Article  Google Scholar 

  • Webb GE, Kamber BS (2000) Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim Cosmochim Acta 64:1557–1565

    Article  CAS  Google Scholar 

  • Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:16116

    Article  CAS  PubMed  Google Scholar 

  • Westall F (1997) The influence of cell wall composition on the fossilization of bacteria and the implications for the search for early life forms. In: Cosmovici C, Bowyer S, Werthimer D (eds) Astronomical and biochemical origins and the search for life in the universe. Editori Compositrici, Bologna, pp 491–504

    Google Scholar 

  • Westall F (2011) Early life: nature, distribution and evolution. In: Gargaud M, López-Garcìa P, Martin H (eds) Origins and evolution of life – An astrobiological perspective. Astrobiology. Cambridge, pp 391–413

    Google Scholar 

  • Westall F (2012) The early Earth. In: Impey C, Lunine J, Funes J (eds) Astrobiology. Cambridge University Press, Cambridge, pp 89–114

    Chapter  Google Scholar 

  • Westall F, Cavalazzi B (2011) Biosignatures in rocks. In: Thiel V, Reitner J (eds) Encyclopedia of geobiology. Springer, Berlin

    Google Scholar 

  • Westall F, Folk RL (2003) Exogenous carbonaceous microstructures in Early Archean cherts and BIFs from the Isua Greenstone Belt: implications for the search for life in ancient rocks. Precambrian Res 126:313–333

    Article  CAS  Google Scholar 

  • Westall F, Boni L, Guerzoni E (1995) The experimental silicification of microorganisms. Paleontology 38:495–528

    Google Scholar 

  • Westall F, de Wit MJ, Dann J, van der Gaast S, de Ronde CEJ, Gerneke D (2001) Early Archaean fossil bacteria and biofilms in hydrothermally–influenced sediments from the Barberton greenstone belt, South Africa. Precambrian Res 106:93–116

    Article  CAS  Google Scholar 

  • Westall F, de Vries ST, Nijman W, Rouchon V, Orberger B, Pearson V, Watson J, Verchovsky A, Wright I, Rouzaud J-N, Marchesini D, Severine A (2006a) The 3.466 Ga “Kitty’s Gap Chert,” an early Archean microbial ecosystem. GSA Special Papers 405:105–131

    Google Scholar 

  • Westall F, de Ronde CEJ, Southam G, Grassineau N, Colas M, Cockell CS, Lammer H (2006b) Implications of a 3.472–3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Philos Trans R Soc B Biol Sci 361:1857–1875

    Article  CAS  Google Scholar 

  • Westall F, Cavalazzi B, Lemelle L, Marrocchi Y, Rouzaud JN, Simionovici A, Salome M, Mostefaoui S, Andreazza C, Foucher F, Toporski J, Jauss A, Thiel V, Southam G, MacLean L, Wirick S, Hofmann A, Meibom A, Robert F, Defarge C (2011a) Implications of in situ calcification for photosynthesis in a similar to 3.3 Ga-old microbial biofilm from the Barberton greenstone belt, South Africa. Earth Planet Sci Lett 310:468–479

    Article  CAS  Google Scholar 

  • Westall F, Foucher F, Cavalazzi B, de Vries S, Nijman W, Pearson V, Watson J, Verchovsky A, Wright I, Rouzaud J-N, Marchesini D, Anne S (2011b) Volcaniclastic habitats for early life on Earth and Mars: a case study from ~3.5 Ga-old rocks from the Pilbara, Australia. Planet Space Sci 59:1093–1106

    Article  CAS  Google Scholar 

  • Westall F, Campbell KA, Breheret JG, Foucher F, Gautret P, Hubert A, Sorieul S, Grassineau N, Guido DM (2015a) Archean (3.33 Ga) microbe-sediment systems were diverse and flourished in a hydrothermal context. Geology 43:615–618

    Article  CAS  Google Scholar 

  • Westall F, Foucher F, Bost N, Bertrand M, Loizeau D, Vago JL, Kminek G, Gaboyer F, Campbell KA, Bréhéret JG, Gautret P, Cockell CS (2015b) Biosignatures on Mars : what, where, and how? Implications for the search for martian life. Astrobiology 15:998–1029

    Article  PubMed  PubMed Central  Google Scholar 

  • Westall F, Hickman-Lewis K, Hinman N, Gautret P, Campbell KA, Bréhéret JG, Foucher F, Hubert A, Sorieul S, Dass AV, Kee TP, Georgelin T, Brack A (2018) A hydrothermal-sedimentary context for the origin of life. Astrobiology 18:259–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  CAS  PubMed  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright VP, Barnett AJ (2015) An abiotic model for the development of textures in some South Atlantic early Cretaceous lacustrine carbonates. Geol Soc Lond Spec Publ 418:SP418.3

    Article  Google Scholar 

  • Zamarreño I, Anadón P, Utrilla R (1997) Sedimentology and isotopic composition of Upper Palaeocene to Eocene non-marine stromatolites, eastern Ebro Basin, NE Spain. Sedimentology 44:159–176

    Article  Google Scholar 

  • Zavala C, Ponce JJ, Arcuri M, Drittanti D, Freije H, Asensio M (2006) Ancient lacustrine hyperpycnites: a depositional model from a case study in the Rayoso Formation (Cretaceous) of West-Central Argentina. J Sediment Res 76:41–59

    Article  Google Scholar 

  • Zhang Y (2002) The age and accretion of the Earth. Earth Sci Rev 59:235–263

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Guy Fauque for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Ollivier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ollivier, B. et al. (2018). Importance of Prokaryotes in the Functioning and Evolution of the Present and Past Geosphere and Biosphere. In: Bertrand, JC., Normand, P., Ollivier, B., Sime-Ngando, T. (eds) Prokaryotes and Evolution. Springer, Cham. https://doi.org/10.1007/978-3-319-99784-1_3

Download citation

Publish with us

Policies and ethics