Advertisement

Comparative Study of the Effectiveness of Perturbative Methods for Creating Official Microdata in Japan

  • Shinsuke ItoEmail author
  • Toru Yoshitake
  • Ryo Kikuchi
  • Fumika Akutsu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11126)

Abstract

The Statistics Bureau of Japan currently creates and provides anonymized microdata for six surveys. Anonymized microdata from the Population Census of Japan are created using non-perturbative methods such as recoding, top coding, and record deletion as well as the perturbative method of swapping.

This paper analyzes several types of anonymized microdata created based on individual data from the Population Census, and explores the potential of using perturbative methods such as swapping and PRAM to create anonymized microdata from Japanese Census Data. Results suggest that perturbative methods can increase data quality, but should be selected according to the properties of the microdata that are to be anonymized. Perturbative methods have the potential to help further enhance statistical methodologies in Japan.

Keywords

Census microdata Targeted data swapping Random data swapping PRAM Distance-based record linkage True match rate 

References

  1. 1.
    Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: SIGMOD 2000 (2000)Google Scholar
  2. 2.
    Agrawal, R., Srikant, R., Thomas, D.: Privacy preserving OLAP. In: SIGMOD. ACM (2005)Google Scholar
  3. 3.
    Dalenius, T., Reiss, S.P.: Data-swapping: a technique for disclosure control (extended abstract). In: Proceedings of Section on Survey Research Methods, pp. 191–194. American Statistical Association, Washington, D.C. (1978)Google Scholar
  4. 4.
    DePersio, M., Lemons, M., Ramanayake, K.A., Tsay, J., Zayatz, L.: n-cycle swapping for the american community survey. In: Domingo-Ferrer, J., Tinnirello, I. (eds.) PSD 2012. LNCS, vol. 7556, pp. 143–164. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33627-0_12CrossRefGoogle Scholar
  5. 5.
    de Wolf, P.P., Gouweleeuw, J.M., Kooiman, P., Willenborg, L.C.R.J.: Reflections on PRAM, Statistical Data Protection (1998)Google Scholar
  6. 6.
    de Wolf, P.P., van Gelder, I.: An empirical evaluation of PRAM, Discussion paper 04012, Statistics Netherlands (2004)Google Scholar
  7. 7.
    Elliot, M., Manning, A.M., Ford, R.W.: A computational algorithm for handling the special uniques problem. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10(5), 493–509 (2002)CrossRefGoogle Scholar
  8. 8.
    Gomatam, S., Karr, A.F.: Distortion measures for categorical data swapping. Technical report, No. 131. National Institute of Statistical Sciences (2003)Google Scholar
  9. 9.
    Ito, S., Hoshino, N.: The potential of data swapping as a disclosure limitation method for official microdata in Japan: an empirical study to assess data utility and disclosure risk for Census microdata. Paper presented at Privacy in Statistical Databases 2012, Palermo, Sicily, Italy, pp. 1–13 (2012)Google Scholar
  10. 10.
    Ito, S., Hoshino, N.: Assessing the effectiveness of disclosure limitation methods for Census microdata in Japan. Paper presented at Joint UNECE/Eurostat Work Session on Statistical Data Confidentiality, Ottawa, Canada, pp. 1–10 (2013)Google Scholar
  11. 11.
    Ito, S., Hoshino, N.: Data swapping as a more efficient tool to create anonymized Census microdata in Japan. Paper presented at Privacy in Statistical Databases 2014, Ibiza, Spain, pp. 1–14 (2014)Google Scholar
  12. 12.
    Ito, S., Hoshino, N., Akutsu, F.: A quantitative assessment of data confidentiality and data utility to create anonymized Census microdata in Japan. Paper presented at Joint UNECE/Eurostat Work Session on Statistical Data Confidentiality, Helsinki, Finland, pp. 1–14 (2015)Google Scholar
  13. 13.
    Ito, S., Hoshino, N., Akutsu, F.: Potential of disclosure limitation methods for Census microdata in Japan. Paper presented at Privacy in Statistical Databases 2016, Dubrovnik, Croatia, pp. 1–14 (2016)Google Scholar
  14. 14.
    Ito, S., Hoshino, N., Akutsu, F., Kikuchi, R.: Investigating new methods for creating anonymized microdata based on Japanese Census data. Paper presented at Joint UNECE/Eurostat Work Session on Statistical Data Confidentiality, Ministry of Foreign Affairs, Skopje, Macedonia, 2017, pp. 1–16 (2017)Google Scholar
  15. 15.
    Kooiman, P., Willenborg, L., and Gouweleeuw, J.: PRAM: a method for disclosure limitation of microdata, Research Paper, No. 9705, Statistics Netherlands, Voorburg (1998)Google Scholar
  16. 16.
    Moore, R.A.: Controlled data-swapping techniques for masked public use microdata sets. Statistical Research Division Report Series, RR 96-04, U.S. Bureau of the Census, Statistical Research Division, Washington, D.C. (1996)Google Scholar
  17. 17.
    Nin, J., Herranz, J., Torra, V.: Rethinking rank swapping to decrease disclosure risk. Data Knowl. Eng. 64(1), 346–364 (2008)CrossRefGoogle Scholar
  18. 18.
    Shlomo, N., Tudor, C., Groom, P.: Data swapping for protecting census tables. In: Domingo-Ferrer, J., Magkos, E. (eds.) PSD 2010. LNCS, vol. 6344, pp. 41–51. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15838-4_4CrossRefGoogle Scholar
  19. 19.
    Takemura, A.: Local recoding and record swapping by maximum weight matching for disclosure control of microdata set. J. Off. Stat. 18(2), 275–289 (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Shinsuke Ito
    • 1
    Email author
  • Toru Yoshitake
    • 2
  • Ryo Kikuchi
    • 3
  • Fumika Akutsu
    • 4
  1. 1.Faculty of EconomicsChuo UniversityTokyoJapan
  2. 2.National Statistics CenterTokyoJapan
  3. 3.NTT Secure Platform LaboratoriesTokyoJapan
  4. 4.Statistics Bureau of JapanTokyoJapan

Personalised recommendations