Symmetric vs Asymmetric Protection Levels in SDC Methods for Tabular Data

  • Daniel Baena
  • Jordi CastroEmail author
  • José A. González
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11126)


Protection levels on sensitive cells—which are key parameters of any statistical disclosure control method for tabular data—are related to the difficulty of any attacker to recompute a good estimation of the true cell values. Those protection levels are two numbers (one for the lower protection, the other for the upper protection) imposing a safety interval around the cell value, that is, no attacker should be able to recompute an estimate within such safety interval. In the symmetric case the lower and upper protection levels are equal; otherwise they are referred as asymmetric protection levels. In this work we empirically study the effect of symmetry in protection levels for three protection methods: cell suppression problem (CSP), controlled tabular adjustment (CTA), and interval protection (IP). Since CSP and CTA are mixed integer linear optimization problems, it is seen that the symmetry (or not) of protection levels affect to the CPU time needed to compute a solution. For IP, a linear optimization problem, it is observed that the symmetry heavily affects to the quality of the solution provided rather than to the solution time.


Statistical disclosure control Tabular data Cell suppression Controlled tabular adjustment Interval protection Mixed integer linear optimization Linear optimization 


  1. 1.
    Baena, D., Castro, J., Frangioni, A.: Stabilized Benders methods for large-scale combinatorial optimization, with application to data privacy. Research report DR 2017/03, Department of Statistics and Operations Research, Universitat Politècnica de Catalunya, Barcelona, Catalonia (2017)Google Scholar
  2. 2.
    Baena, D., Castro, J., González, J.A.: Fix-and-relax approaches for controlled tabular adjustment. Comput. Oper. Res. 58, 41–52 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Comput. Manage. Sci. 2, 3–19 (2005). English translation of the original paper appeared in Numerische Mathematik, 4 (1962) 238–252MathSciNetCrossRefGoogle Scholar
  4. 4.
    Castro, J.: Minimum-distance controlled perturbation methods for large-scale tabular data protection. Eur. J. Oper. Res. 171, 39–52 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Castro, J.: A shortest paths heuristic for statistical disclosure control in positive tables. INFORMS J. Comput. 19, 520–533 (2007)CrossRefGoogle Scholar
  6. 6.
    Castro, J.: Recent advances in optimization techniques for statistical tabular data protection. Eur. J. Oper. Res. 216, 257–269 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Castro, J., González, J.A., Baena, D.: User’s and programmer’s manual of the RCTA package. Technical report DR 2009/01, Department of Statistics and Operations Research, Universitat Politècnica de Catalunya, Barcelona, Catalonia (2009)Google Scholar
  8. 8.
    Castro, J., Via, A.: Revisiting interval protection, a.k.a. partial cell suppression, for tabular data. In: Domingo-Ferrer, J., Pejić-Bach, M. (eds.) PSD 2016. LNCS, vol. 9867, pp. 3–14. Springer, Cham (2016). Scholar
  9. 9.
    Castro, J., Frangioni, A., Gentile, C.: Perspective reformulations of the CTA problem with \(L_2\) distances. Oper. Res. 62, 891–909 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fischetti, M., Salazar, J.J.: Solving the cell suppression problem on tabular data with linear constraints. Manage. Sci. 47, 1008–1026 (2001)CrossRefGoogle Scholar
  11. 11.
    Fischetti, M., Salazar, J.J.: Partial cell suppression: a new methodology for statistical disclosure control. Stat. Comput. 13, 13–21 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fourer, R., Gay, D.M., Kernighan, D.W.: AMPL: A Modeling Language for Mathematical Programming. Duxbury Press, Duxbury (2002)zbMATHGoogle Scholar
  13. 13.
    González, J.A., Castro, J.: A heuristic block coordinate descent approach for controlled tabular adjustment. Comput. Oper. Res. 38, 1826–1835 (2011)CrossRefGoogle Scholar
  14. 14.
    Hundepool, A., et al.: Statistical Disclosure Control. Wiley, Chichester (2012)CrossRefGoogle Scholar
  15. 15.
    Kelly, J.P., Golden, B.L., Assad, A.A.: Cell suppression: disclosure protection for sensitive tabular data. Networks 22, 28–55 (1992)CrossRefGoogle Scholar
  16. 16.
    Robertson, D.: Automated disclosure control at Statistics Canada. In: Paper presented at the second international seminar on statistical confidentiality, Luxembourg (1994)Google Scholar
  17. 17.
    Wright, S.J.: Primal-Dual Interior-Point Methods. SIAM, Philadelphia (1997)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Daniel Baena
    • 1
  • Jordi Castro
    • 1
    Email author
  • José A. González
    • 1
  1. 1.Department of Statistics and Operations ResearchUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations