Skip to main content

Storage and Retrieval of Electromagnetic Waves in Metamaterials by Dynamical Control of EIT-Like Effect

  • Chapter
  • First Online:
Fano Resonances in Optics and Microwaves

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 219))

  • 2656 Accesses

Abstract

The storage of light is one of the most significant applications of electromagnetically induced transparency (EIT) effects in atomic systems. It is also possible to mimic the EIT effect using artificial media, or metamaterials, which are based on coupled resonators. This chapter focuses on metamaterials that realize the storage and retrieval of electromagnetic waves in the same way as the atomic EIT system. We introduce tunable metamaterials that are loaded with variable capacitors, which realize dynamical modulation of the EIT-like effects and the control of asymmetric spectra unique to the Fano resonance. Experiments are performed to show that electromagnetic waves are stored and released coherently in a multi-layered metamaterial designed for the operation in the microwave region. In addition, we show the frequency conversion of the stored waves and the extension of the storage time using parametric amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Harris, Phys. Today 50, 36 (1997)

    Article  Google Scholar 

  2. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  Google Scholar 

  3. M. Fleischhauer, M. Lukin, Phys. Rev. Lett. 84, 5094 (2000)

    Article  ADS  Google Scholar 

  4. D. Phillips, A. Fleischhauer, A. Mair, R. Walsworth, M. Lukin, Phys. Rev. Lett. 86, 783 (2001)

    Article  ADS  Google Scholar 

  5. C. Liu, Z. Dutton, C.H. Behroozi, L.V. Hau, Nature 409, 490 (2001)

    Article  ADS  Google Scholar 

  6. A. Turukhin, V. Sudarshanam, M. Shahriar, J. Musser, B. Ham, P. Hemmer, Phys. Rev. Lett. 88, 023602 (2002)

    Google Scholar 

  7. S. Chu, B. Little, W. Pan, T. Kaneko, Y. Kokubun, I.E.E.E. Photon, Technol. Lett. 11, 1426 (1999)

    Google Scholar 

  8. Q. Xu, S. Sandhu, M. Povinelli, J. Shakya, S. Fan, M. Lipson, Phys. Rev. Lett. 96, 123901 (2006)

    Article  ADS  Google Scholar 

  9. K. Totsuka, N. Kobayashi, M. Tomita, Phys. Rev. B 98, 213904 (2007)

    Google Scholar 

  10. R.D. Kekatpure, E.S. Barnard, W. Cai, M.L. Brongersma, Phys. Rev. Lett. 104, 243902 (2010)

    Article  ADS  Google Scholar 

  11. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K.J. Vahala, O. Painter, Nat. Photonics 4, 236 (2010)

    Google Scholar 

  12. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T.J. Kippenberg, Science 330, 1520 (2010)

    Article  ADS  Google Scholar 

  13. A.H. Safavi-Naeini, T.P.M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J.T. Hill, D.E. Chang, O. Painter, Nature 472, 69 (2011)

    Article  ADS  Google Scholar 

  14. I. Yoo, C.K. Han, D.S. Shin, K.J.B. Lee, J.W. Wu, H.S. Moon, O.B. Wright, S.H. Lee, Sci. Rep. 4, 4634 (2014)

    Article  Google Scholar 

  15. C.L. Garrido Alzar, M.A.G. Martinez, P. Nussenzveig, Am. J. Phys. 70, 37 (2002)

    Article  ADS  Google Scholar 

  16. V.A. Fedotov, M. Rose, S.L. Prosvirnin, N. Papasimakis, N.I. Zheludev, Phys. Rev. Lett. 99, 147401 (2007)

    Article  ADS  Google Scholar 

  17. N. Papasimakis, V.A. Fedotov, N.I. Zheludev, S.L. Prosvirnin, Phys. Rev. Lett. 101, 253903 (2008)

    Article  ADS  Google Scholar 

  18. S.Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, A. Bettiol, Phys. Rev. B 80, 153103 (2009)

    Article  ADS  Google Scholar 

  19. Z. Li, Y. Ma, R. Huang, R. Singh, J. Gu, Z. Tian, J. Han, W. Zhang, Opt. Express 19, 8912 (2011)

    Article  ADS  Google Scholar 

  20. R. Singh, I.A.I. Al-Naib, Y. Yang, D. Roy Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, W. Zhang, Appl. Phys. Lett. 99, 201107 (2011)

    Article  ADS  Google Scholar 

  21. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, Nat. Mater. 8, 758 (2009)

    Article  ADS  Google Scholar 

  22. J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, N.A. Mortensen, Opt. Express 18, 17187 (2010)

    Article  ADS  Google Scholar 

  23. W. Huang, Q. Wang, X. Yin, C. Huang, H. Huang, Y. Wang, and Y. Zhu, J. Appl. Phys. 109, 114310 (2011)

    Google Scholar 

  24. R. Hokari, Y. Kanamori, K. Hane, J. Opt. Soc. Am. B 31, 1000 (2014)

    Article  ADS  Google Scholar 

  25. Y. Yang, I.I. Kravchenko, D.P. Briggs, J. Valentine, Nat. Commun. 5, 5753 (2014)

    Article  ADS  Google Scholar 

  26. B. Lahiri, A.Z. Khokhar, R.M. De La Rue, S.G. McMeekin, N.P. Johnson, Opt. Express 17, 1107 (2009)

    Article  ADS  Google Scholar 

  27. Z.G. Dong, H. Liu, J.X. Cao, T. Li, S.M. Wang, S.N. Zhu, X. Zhang, Appl. Phys. Lett. 97, 114101 (2010)

    Article  ADS  Google Scholar 

  28. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, Nano Lett. 10, 1103 (2010)

    Article  ADS  Google Scholar 

  29. F. Cheng, X. Yang, J. Gao, Sci. Rep. 5, 14327 (2015)

    Article  ADS  Google Scholar 

  30. S. Zhang, Z. Ye, Y. Wang, Y. Park, G. Bartal, M. Mrejen, X. Yin, X. Zhang, Phys. Rev. Lett. 109, 193902 (2012)

    Article  ADS  Google Scholar 

  31. X. Zhang, Q. Xu, Q. Li, Y. Xu, J. Gu, Z. Tian, C. Ouyang, Y. Liu, S. Zhang, X. Zhang, J. Han, W. Zhang, Sci. Adv. 2, e1501142 (2016)

    Article  ADS  Google Scholar 

  32. Y. Sun, Y. Tong, C. Xue, Y. Ding, Y. Li, H. Jiang, H. Chen, Appl. Phys. Lett. 103, 091904 (2013)

    Article  ADS  Google Scholar 

  33. S.H. Mousavi, A.B. Khanikaev, J. Allen, M. Allen, G. Shvets, Phys. Rev. Lett. 112, 117402 (2014)

    Article  ADS  Google Scholar 

  34. D. Floess, M. Hentschel, T. Weiss, H.U. Habermeier, J. Jiao, S.G. Tikhodeev, H. Giessen, Phys. Rev. X 7, 021048 (2017)

    Google Scholar 

  35. N. Zheludev, S. Prosvirnin, N. Papasimakis, V. Fedotov, Nat. Photonics 2, 351 (2008)

    Article  ADS  Google Scholar 

  36. Y. Yang, W. Wang, A. Boulesbaa, I.I. Kravchenko, D.P. Briggs, A. Puretzky, D. Geohegan, J. Valentine, Nano Lett. 15, 7388 (2015)

    Article  ADS  Google Scholar 

  37. R. Taubert, M. Hentschel, J. Kästel, H. Giessen, Nano Lett. 12, 1367 (2012)

    Article  ADS  Google Scholar 

  38. L. Verslegers, Z. Yu, Z. Ruan, P.B. Catrysse, S. Fan, Phys. Rev. Lett. 108, 083902 (2012)

    Article  ADS  Google Scholar 

  39. I.V. Shadrivov, M. Lapine, Y.S. Kivshar, Nonlinear, Tunable and Active Metamaterials (Springer, Switzerland, 2015)

    Google Scholar 

  40. D. Meng, S. Wang, X. Sun, R. Gong, C. Chen, Appl. Phys. Lett. 104, 261902 (2014)

    Article  ADS  Google Scholar 

  41. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. Zhuravel, A. Ustinov, S. Anlage, C. Soukoulis, Phys. Rev. Lett. 107, 043901 (2011)

    Article  ADS  Google Scholar 

  42. O. Limaj, F. Giorgianni, A. Di Gaspare, V. Giliberti, G. de Marzi, P. Roy, M. Ortolani, X. Xi, D. Cunnane, S. Lupi, ACS Photonics 1, 570 (2014)

    Article  Google Scholar 

  43. Y. Tamayama, K. Hamada, K. Yasui, Phys. Rev. B 92, 125124 (2015)

    Article  ADS  Google Scholar 

  44. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S.A. Maier, Z. Tian, A.K. Azad, H.T. Chen, A.J. Taylor, J. Han, W. Zhang, Nat. Commun. 3, 1151 (2012)

    Article  Google Scholar 

  45. F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, M.W. Takeda, Sci. Rep. 4, 4346 (2014)

    Article  ADS  Google Scholar 

  46. R. Yahiaoui, M. Manjappa, Y.K. Srivastava, R. Singh, Appl. Phys. Lett. 111, 021101 (2017)

    Article  ADS  Google Scholar 

  47. P. Pitchappa, M. Manjappa, C.P. Ho, R. Singh, N. Singh, C. Lee, Adv. Opt. Mater. 4, 541 (2016)

    Article  Google Scholar 

  48. M. Scully, M. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  49. L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Nature 397, 594 (1999)

    Article  ADS  Google Scholar 

  50. W. Frank, P. Brentano, Am. J. Phys. 62, 706 (1994)

    Article  ADS  Google Scholar 

  51. J.L. Rosner, Am. J. Phys. 64, 982 (1996)

    Article  ADS  Google Scholar 

  52. S. Zhang, D.A. Genov, Y. Wang, M. Liu, X. Zhang, Phys. Rev. Lett. 101, 047401 (2008)

    Google Scholar 

  53. U. Fano, 124, 1866 (1961)

    Google Scholar 

  54. A. Miroshnichenko, S. Flach, Y. Kivshar, Rev. Mod. Phys. 82, 2257 (2010)

    Article  ADS  Google Scholar 

  55. B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, Nat. Mater. 9, 707 (2010)

    Article  ADS  Google Scholar 

  56. M.F. Limonov, M.V. Rybin, A.N. Poddubny, Y. Kivshar, Nat. Photon. 11, 543 (2017)

    Google Scholar 

  57. T. Nakanishi, T. Otani, Y. Tamayama, M. Kitano, Phys. Rev. B 87, 161110 (2013)

    Article  ADS  Google Scholar 

  58. M. Kang, H.X. Cui, Y. Li, B. Gu, J. Chen, H.T. Wang, J. Appl. Phys. 109, 014901 (2011)

    Article  ADS  Google Scholar 

  59. A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, New York, 1997)

    Google Scholar 

  60. M.V. Gorkunov, I.V. Shadrivov, Y.S. Kivshar, Appl. Phys. Lett. 88, 071912 (2006)

    Article  ADS  Google Scholar 

  61. T. Kanazawa, Y. Tamayama, T. Nakanishi, M. Kitano, Appl. Phys. Lett. 99, 024101 (2011)

    Article  ADS  Google Scholar 

  62. T. Nakanishi, Y. Tamayama, M. Kitano, Appl. Phys. Lett. 100, 044103 (2012)

    Article  ADS  Google Scholar 

  63. T. Nakanishi, M. Kitano, Phys. Rev. Appl. 4, 024013 (2015)

    Article  ADS  Google Scholar 

  64. T. Nakanishi, M. Kitano, Appl. Phys. Lett. 112, 201905 (2018)

    Article  ADS  Google Scholar 

  65. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Science 314, 977 (2006)

    Article  ADS  Google Scholar 

  66. U. Leonhardt, Science 312, 1777 (2006)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was financially supported by JSPS KAKENHI Grants No. 22560041, No. 22109004, No. 25790065, No. 25287101, and No. 17K05075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Nakanishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakanishi, T., Kitano, M. (2018). Storage and Retrieval of Electromagnetic Waves in Metamaterials by Dynamical Control of EIT-Like Effect. In: Kamenetskii, E., Sadreev, A., Miroshnichenko, A. (eds) Fano Resonances in Optics and Microwaves. Springer Series in Optical Sciences, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-99731-5_6

Download citation

Publish with us

Policies and ethics