Skip to main content

Weak Coupling, Strong Coupling, Critical Coupling and Fano Resonances: A Unifying Vision

  • Chapter
  • First Online:
Book cover Fano Resonances in Optics and Microwaves

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 219))

Abstract

The transversal concepts of weak, strong and critical coupling, and of Fano resonances, are analyzed within a unified framework which relies on a simple classical model of driven-dissipative coupled oscillators. A careful exploration of the system’s parameter space has led to the emergence of certain intriguing phenomena, which we named lineshape inheritance, universal absorption lineshape, and strong critical coupling. These concepts may be of relevance when attempting to understand the response of a diversity of systems, especially in the fields of (quantum) light-matter coupling, and of solid-state nanophysics, where the basic scheme of multi-oscillator dissipative resonances is often encountered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The following expressions are the most general ones that fulfill the constraints given in (23.2), and generalize both [27] and [43].

  2. 2.

    Reflectance behaves similarly.

  3. 3.

    We anticipate that the parameter \(\xi \) does not affect the line shapes.

  4. 4.

    Specifically it holds \(\tan \delta = \left( \rho _2 \sin \psi _2 + \rho _1 \sin \psi _1 \right) / \left( \rho _2 \cos \psi _2 - \rho _1 \cos \psi _1 \right) \), where \(\rho _{1,2}\) and \(\psi _{1,2}\) are the amplitudes and phases of the reflection coefficients \(s_{11}\) and \(s_{22}\), respectively.

  5. 5.

    This fact is interesting since the product \(r \xi \) is directly connected with the cavity-exterior coupling coefficients \(\kappa \) (see Sect. 23.2).

  6. 6.

    Notice, however, that the curve which separates the single- from the double-peak region of reflectance and transmittance spectra is different. See also [50] for a discussion on this topic.

References

  1. A. Auffèves, D. Gerace, M. Richard, S. Portolan, M.F. Santos, L.C. Kwek, C.E. Miniatura, Strong Light-Matter Coupling: From Atoms to Solid-State Systems (World Scientific, 2013)

    Google Scholar 

  2. A.V. Kavokin, J.J. Baumberg, G. Malpuech, F.P. Laussy, Microcavities (Oxford University Press, 2007)

    Google Scholar 

  3. A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010). https://doi.org/10.1103/RevModPhys.82.2257

    Article  ADS  Google Scholar 

  4. B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, Nat. Mater. 9(9), 707 (2010). http://www.ncbi.nlm.nih.gov/pubmed/20733610

  5. M.F. Limonov, M.V. Rybin, A.N. Poddubny, Y.S. Kivshar, Nat. Photonics 11(9), 543 (2017)

    Article  Google Scholar 

  6. R.D. Artuso, G.W. Bryant, Nano Lett. 8(7), 2106 (2008). https://doi.org/10.1021/nl800921z. PMID: 18558787

    Article  ADS  Google Scholar 

  7. A. Manjavacas, F.J.G.d. Abajo, P. Nordlander, Nano Lett. 11(6), 2318 (2011). https://doi.org/10.1021/nl200579f. PMID: 21534592

    Article  ADS  Google Scholar 

  8. A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, S. Savasta, Phys. Rev. Lett. 105, 263601 (2010). https://doi.org/10.1103/PhysRevLett.105.263601

  9. E. Waks, D. Sridharan, Phys. Rev. A 82, 043845 (2010). https://doi.org/10.1103/PhysRevA.82.043845

  10. C. Ciuti, I. Carusotto, Phys. Rev. A 74, 033811 (2006). https://doi.org/10.1103/PhysRevA.74.033811

  11. G.S. Agarwal, Y. Zhu, Phys. Rev. A 92, 023824 (2015). https://doi.org/10.1103/PhysRevA.92.023824

  12. J. Yang, M. Perrin, P. Lalanne, Phys. Rev. X 5, 021008 (2015). https://doi.org/10.1103/PhysRevX.5.021008

  13. S. Zhang, D.A. Genov, Y. Wang, M. Liu, X. Zhang, Phys. Rev. Lett. 101, 047401 (2008). https://doi.org/10.1103/PhysRevLett.101.047401

  14. B. Gallinet, O.J.F. Martin, Phys. Rev. B 83, 235427 (2011). https://doi.org/10.1103/PhysRevB.83.235427

  15. V. Giannini, Y. Francescato, H. Amrania, C.C. Phillips, S.A. Maier, Nano Lett. 11(7), 2835 (2011). https://doi.org/10.1021/nl201207n. PMID: 21635012

    Article  ADS  Google Scholar 

  16. F. Alpeggiani, S. D’Agostino, L.C. Andreani, Phys. Rev. B 86, 035421 (2012). https://doi.org/10.1103/PhysRevB.86.035421

  17. D. Dini, R. Köhler, A. Tredicucci, G. Biasiol, L. Sorba, Phys. Rev. Lett. 90, 116401 (2003). https://doi.org/10.1103/PhysRevLett.90.116401

  18. C. Ciuti, G. Bastard, I. Carusotto, Phys. Rev. B 72, 115303 (2005). https://doi.org/10.1103/PhysRevB.72.115303

  19. Y. Todorov, A.M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, C. Sirtori, Phys. Rev. Lett. 105, 196402 (2010). https://doi.org/10.1103/PhysRevLett.105.196402

  20. G. Günter, A.A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, R. Huber, Nature 458(7235), 178 (2009), http://www.ncbi.nlm.nih.gov/pubmed/19279631

    Article  ADS  Google Scholar 

  21. S. Zanotto, G. Biasiol, R. Degl’Innocenti, L. Sorba, A. Tredicucci, Appl. Phys. Lett. 97(23), 231123 (2010), https://aip.scitation.org/doi/10.1063/1.3524823

    Article  ADS  Google Scholar 

  22. S. Zanotto, R. Degl’Innocenti, L. Sorba, A. Tredicucci, G. Biasiol, Phys. Rev. B 85, 035307 (2012). https://doi.org/10.1103/PhysRevB.85.035307

  23. A. Christ, S.G. Tikhodeev, N.A. Gippius, J. Kuhl, H. Giessen, Phys. Rev. Lett. 91, 183901 (2003). https://doi.org/10.1103/PhysRevLett.91.183901

  24. C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992). https://doi.org/10.1103/PhysRevLett.69.3314

    Article  ADS  Google Scholar 

  25. C.R. Gubbin, F. Martini, A. Politi, S.A. Maier, S. De Liberato, Phys. Rev. Lett. 116, 246402 (2016). https://doi.org/10.1103/PhysRevLett.116.246402

  26. S. Fan, P.R. Villeneuve, J.D. Joannopoulos, H.A. Haus, Phys. Rev. Lett. 80, 960 (1998). https://doi.org/10.1103/PhysRevLett.80.960

    Article  ADS  Google Scholar 

  27. S. Fan, W. Suh, J.D. Joannopoulos, J. Opt. Soc. Am. A 20(3), 569 (2003). http://josaa.osa.org/abstract.cfm?URI=josaa-20-3-569

    Article  ADS  Google Scholar 

  28. T.J. Davis, D.E. Gómez, Rev. Mod. Phys. 89, 011003 (2017). https://doi.org/10.1103/RevModPhys.89.011003

  29. A.N. Poddubny, M.V. Rybin, M.F. Limonov, Y.S. Kivshar, Nat. Commun. 3, 914 (2012)

    Article  ADS  Google Scholar 

  30. V. Achilleos, G. Theocharis, O. Richoux, V. Pagneux, Phys. Rev. B 95, 144303 (2017). https://doi.org/10.1103/PhysRevB.95.144303

  31. Y. Sun, W. Tan, H.Q. Li, J. Li, H. Chen. Phys. Rev. Lett. 112, 143903 (2014). https://doi.org/10.1103/PhysRevLett.112.143903

  32. A. Thomas, J. George, A. Shalabney, M. Dryzhakov, S.J. Varma, J. Moran, T. Chervy, X. Zhong, E. Devaux, C. Genet, J.A. Hutchison, T.W. Ebbesen, Angew. Chem. Int. Edition 55(38), 11462 (2016). https://doi.org/10.1002/anie.201605504

    Article  Google Scholar 

  33. K.C. Balram, M.I. Davanço, J.D. Song, K. Srinivasan, Nat. Photonics 10(5), 346 (2016)

    Article  ADS  Google Scholar 

  34. D. Malz, L.D. Tóth, N.R. Bernier, A.K. Feofanov, T.J. Kippenberg, A. Nunnenkamp, Phys. Rev. Lett. 120, 023601 (2018). https://doi.org/10.1103/PhysRevLett.120.023601

  35. C. Bonizzoni, A. Ghirri, M. Atzori, L. Sorace, R. Sessoli, M. Affronte, Sci. Rep. 7(1), 13096 (2017)

    Article  ADS  Google Scholar 

  36. Z.L. Xiang, S. Ashhab, J.Q. You, F. Nori, Rev. Mod. Phys. 85, 623 (2013). https://doi.org/10.1103/RevModPhys.85.623

    Article  ADS  Google Scholar 

  37. S. Fan, J.D. Joannopoulos, Phys. Rev. B 65, 235112 (2002). https://doi.org/10.1103/PhysRevB.65.235112

  38. R.E. Hamam, A. Karalis, J.D. Joannopoulos, M. Soljačić, Phys. Rev. A 75, 053801 (2007). https://link.aps.org/doi/10.1103/PhysRevA.75.053801

  39. K.X. Wang, Z. Yu, S. Sandhu, S. Fan, Opt. Lett. 38(2), 100 (2013). http://ol.osa.org/abstract.cfm?URI=ol-38-2-100

    Article  ADS  Google Scholar 

  40. K.X. Wang, Z. Yu, S. Sandhu, V. Liu, S. Fan, Optica 1(6), 388 (2014). http://www.osapublishing.org/optica/abstract.cfm?URI=optica-1-6-388

    Article  Google Scholar 

  41. H. Zhou, B. Zhen, C.W. Hsu, O.D. Miller, S.G. Johnson, J.D. Joannopoulos, M. Soljačić, Optica 3(10), 1079 (2016). http://www.osapublishing.org/optica/abstract.cfm?URI=optica-3-10-1079

    Article  Google Scholar 

  42. F. Alpeggiani, N. Parappurath, E. Verhagen, L. Kuipers, Phys. Rev. X 7, 021035 (2017). https://doi.org/10.1103/PhysRevX.7.021035

  43. A. Auffèves-Garnier, C. Simon, J.M. Gérard, J.P. Poizat, Phys. Rev. A 75, 053823 (2007). https://doi.org/10.1103/PhysRevA.75.053823

  44. S. Zanotto, Intersubband polaritons in photonic crystal slabs. Ph.D. thesis, Scuola Normale Superiore, Pisa (2014). http://metapublishing.org/index.php/MP/catalog/book/45

  45. J.H. Wu, M. Artoni, G.C. La Rocca, Phys. Rev. Lett. 113, 123004 (2014). https://doi.org/10.1103/PhysRevLett.113.123004

  46. D.G. Baranov, A. Krasnok, T. Shegai, A. Alù, Y. Chong, Nat. Rev. Mater. 2(12), 17064 (2017)

    Article  ADS  Google Scholar 

  47. J. Yoon, K.H. Seol, S.H. Song, R. Magnusson, Opt. Express 18(25), 25702 (2010). http://www.opticsexpress.org/abstract.cfm?URI=oe-18-25-25702

    Article  ADS  Google Scholar 

  48. L. Ge, L. Feng, Phys. Rev. A 95(1), 013813 (2017). http://link.aps.org/doi/10.1103/PhysRevA.95.013813

  49. L. Baldacci, S. Zanotto, G. Biasiol, L. Sorba, A. Tredicucci, Opt. Express 23(7), 9202 (2015). http://www.opticsexpress.org/abstract.cfm?URI=oe-23-7-9202

    Article  ADS  Google Scholar 

  50. V. Savona, L. Andreani, P. Schwendimann, A. Quattropani, Solid State Commun. 93(9), 733 (1995). http://www.sciencedirect.com/science/article/pii/0038109894008655

  51. S. Zanotto, F.P. Mezzapesa, F. Bianco, G. Biasiol, L. Baldacci, M.S. Vitiello, L. Sorba, R. Colombelli, A. Tredicucci, Nat. Phys. 10(11), 830 (2014)

    Article  Google Scholar 

  52. J.M. Manceau, S. Zanotto, T. Ongarello, L. Sorba, A. Tredicucci, G. Biasiol, R. Colombelli, Appl. Phys. Lett. 105(8), 081105 (2014)

    Article  ADS  Google Scholar 

  53. S. Zanotto, A. Tredicucci, Sci. Rep. 6, 24592 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author acknowledges very insightful discussions with Dr. Raffaele Colombelli, Lorenzo Baldacci, and Prof. Alessandro Tredicucci.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Zanotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zanotto, S. (2018). Weak Coupling, Strong Coupling, Critical Coupling and Fano Resonances: A Unifying Vision. In: Kamenetskii, E., Sadreev, A., Miroshnichenko, A. (eds) Fano Resonances in Optics and Microwaves. Springer Series in Optical Sciences, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-99731-5_23

Download citation

Publish with us

Policies and ethics