Skip to main content

Fano-resonant Excitations of Generalized Optical Spin Waves

  • Chapter
  • First Online:
Fano Resonances in Optics and Microwaves

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 219))

Abstract

While chiral materials possess spin-form wave functions as their eigenmodes, optical spin excitations cannot be obtained solely in chiral materials due to a lack of spin impedances. To date, spin excitation has generally been induced through non-conservative methods, such as circular dichroism or magneto-optical effects. In this chapter, we describe a conservative approach to optical spin excitation and control based on the spin-dependent appearance of Fano resonance. Starting from the development of the spin-form temporal coupled mode theory for 2D and 3D chiral resonances, the origin of the spin-Fano interactions is demonstrated in terms of the link between the spin eigenmodes in the polarization domain and anti-symmetric Fano resonances in the spectral domain. By comparing this spin-dependent Fano-resonant system with other optical spin materials, such as chiral, circular dichroic, and birefringent media, we discuss the impact of our results toward the realization of optical spintronics, such as applications of highly selective spin switching and unpolarized spinning operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Kirchain, L. Kimerling, A roadmap for nanophotonics. Nat. Photon. 1, 303–305 (2007)

    Article  ADS  Google Scholar 

  2. S.A. Maier, Plasmonics: Fundamentals and Application (Springer Science & Business Media, 2007)

    Google Scholar 

  3. N. Engheta, R.W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (John Wiley & Sons, 2006)

    Google Scholar 

  4. D.A. Miller, Are optical transistors the logical next step? Nat. Photon. 4, 3–5 (2010)

    Article  ADS  Google Scholar 

  5. T. Baehr-Jones, T. Pinguet, P.L. Guo-Qiang, S. Danziger, D. Prather, M. Hochberg, Myths and rumours of silicon photonics. Nat. Photon. 6, 206–208 (2012)

    Article  ADS  Google Scholar 

  6. D. Sanvitto, S. Kéna-Cohen, The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016)

    Article  ADS  Google Scholar 

  7. A.Y. Bekshaev, K.Y. Bliokh, F. Nori, Transverse spin and momentum in two-wave interference. Phys. Rev. X 5, 011039 (2015)

    Google Scholar 

  8. K.Y. Bliokh, F. Nori, Transverse and longitudinal angular momenta of light. Phys. Rep. 592, 1–38 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  9. K.Y. Bliokh, F. Rodríguez-Fortuño, F. Nori, A.V. Zayats, Spin-orbit interactions of light. Nat. Photon. 9, 796–808 (2015)

    Article  ADS  Google Scholar 

  10. K.Y. Bliokh, D. Smirnova, F. Nori, Quantum spin hall effect of light. Science 348, 1448–1451 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. X. Piao, S. Yu, J. Hong, N. Park, Spectral separation of optical spin based on antisymmetric Fano resonances. Sci. Rep. 5, 16585 (2015)

    Article  ADS  Google Scholar 

  12. S. Yu, H.S. Park, X. Piao, B. Min, N. Park, Low-dimensional optical chirality in complex potentials. Optica 3, 1025–1032 (2016)

    Article  Google Scholar 

  13. X. Piao, S. Yu, N. Park, Design of transverse spinning of light with globally unique handedness. Phys. Rev. Lett. 120, 203901 (2018)

    Google Scholar 

  14. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A.E. Willner, S. Ramachandran, Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013)

    Article  ADS  Google Scholar 

  15. E. Karimi, S.A. Schulz, I. De Leon, H. Qassim, J. Upham, R.W. Boyd, Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl. 3, e167 (2014)

    Article  ADS  Google Scholar 

  16. D.L. Vitullo, C.C. Leary, P. Gregg, R.A. Smith, D.V. Reddy, S. Ramachandran, M.G. Raymer, Observation of interaction of spin and intrinsic orbital angular momentum of light. Phys. Rev. Lett. 118, 083601 (2017)

    Article  ADS  Google Scholar 

  17. A.B. Khanikaev, S.H. Mousavi, W.K. Tse, M. Kargarian, A.H. MacDonald, G. Shvets, Photonic topological insulators. Nat. Mater. 12, 233–239 (2013)

    Article  ADS  Google Scholar 

  18. M.C. Rechtsman, J.M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit, Photonic floquet topological insulators. Nature 496, 196–200 (2013)

    Article  ADS  Google Scholar 

  19. L. Lu, J.D. Joannopoulos, M. Soljačić, Topological photonics. Nat. Photon. (2014)

    Google Scholar 

  20. B. Plansinis, W. Donaldson, G. Agrawal, What is the temporal analog of reflection and refraction of optical beams? Phys. Rev. Lett. 115, 183901 (2015)

    Article  ADS  Google Scholar 

  21. Y. Xiao, D.N. Maywar, G.P. Agrawal, Reflection and transmission of electromagnetic waves at a temporal boundary. Opt. Lett. 39, 574–577 (2014)

    Article  ADS  Google Scholar 

  22. Z. Yu, S. Fan, Complete optical isolation created by indirect interband photonic transitions. Nat. Photon. 3, 91–94 (2009)

    Article  ADS  Google Scholar 

  23. M. Florescu, S. Torquato, P.J. Steinhardt, Designer disordered materials with large, complete photonic band gaps. Proc. Natl. Acad. Sci. 106, 20658 (2009)

    Article  ADS  Google Scholar 

  24. W. Man, M. Florescu, K. Matsuyama, P. Yadak, G. Nahal, S. Hashemizad, E. Williamson, P. Steinhardt, S. Torquato, P. Chaikin, Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast. Opt. Express 21, 19972–19981 (2013)

    Article  ADS  Google Scholar 

  25. S. Torquato, Hyperuniformity and its generalizations. Phys. Rev. E 94, 022122 (2016)

    Article  ADS  Google Scholar 

  26. S. Yu, X. Piao, J. Hong, N. Park, Bloch-like waves in random-walk potentials based on supersymmetry. Nat. Commun. 6, 8269 (2015)

    Article  ADS  Google Scholar 

  27. S. Yu, X. Piao, J. Hong, N. Park, Metadisorder for designer light in random systems. Sci. Adv. 2, e1501851 (2016)

    Article  ADS  Google Scholar 

  28. S. Van Enk, G. Nienhuis, Spin and orbital angular momentum of photons. Europhys. Lett. 25, 497 (1994)

    Article  ADS  Google Scholar 

  29. E. Collett, Polarized light. Fundamentals and applications, in Optical Engineering (Dekker, New York, 1992)

    Google Scholar 

  30. Y. Tang, A.E. Cohen, Optical chirality and its interaction with matter. Phys. Rev. Lett. 104 (2010)

    Google Scholar 

  31. Y. Cui, L. Kang, S. Lan, S. Rodrigues, W. Cai, Giant chiral optical response from a twisted-arc metamaterial. Nano Lett. 14, 1021–1025 (2014)

    Article  ADS  Google Scholar 

  32. M. Thiel, M.S. Rill, G. von Freymann, M. Wegener, Three-dimensional bi-chiral photonic crystals. Adv. Mater. 21, 4680–4682 (2009)

    Article  Google Scholar 

  33. J.K. Gansel, M. Thiel, M.S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009)

    Article  ADS  Google Scholar 

  34. S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, X. Zhang, Negative refractive index in chiral metamaterials. Phys. Rev. Lett. 102 (2009)

    Google Scholar 

  35. J.B. Pendry, A chiral route to negative refraction. Science 306, 1353–1355 (2004)

    Article  ADS  Google Scholar 

  36. Y. Zhao, M. Belkin, A. Alù, Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 3, 870 (2012)

    Article  ADS  Google Scholar 

  37. S.H. Mousavi, A.B. Khanikaev, J. Allen, M. Allen, G. Shvets, Gyromagnetically induced transparency of metasurfaces. Phys. Rev. Lett. 112, 117402 (2014)

    Article  ADS  Google Scholar 

  38. V. Agranovich, Y.N. Gartstein, A. Zakhidov, Negative refraction in gyrotropic media. Phys. Rev. B 73, 045114 (2006)

    Article  ADS  Google Scholar 

  39. L. Lu, L. Fu, J.D. Joannopoulos, M. Soljačić, Weyl points and line nodes in gyroid photonic crystals. Nat. Photon. 7, 294–299 (2013)

    Article  ADS  Google Scholar 

  40. A. Papakostas, A. Potts, D.M. Bagnall, S.L. Prosvirnin, H.J. Coles, N.I. Zheludev, Optical manifestations of planar chirality. Phys. Rev. Lett. 90 (2003)

    Google Scholar 

  41. E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, N. Zheludev, Metamaterials: optical activity without chirality. Phys. Rev. Lett. 102, 113902 (2009)

    Article  ADS  Google Scholar 

  42. E. Plum, J. Zhou, J. Dong, V. Fedotov, T. Koschny, C. Soukoulis, N. Zheludev, Metamaterial with negative index due to chirality. Phys. Rev. B 79, 035407 (2009)

    Article  ADS  Google Scholar 

  43. S. Yu, X. Piao, N. Park, Acceleration toward polarization singularity inspired by relativistic E × B drift. Sci. Rep. 6, 37754 (2016)

    Article  ADS  Google Scholar 

  44. M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, S. Zhang, Manifestation of PT symmetry breaking in polarization space with terahertz metasurfaces. Phys. Rev. Lett. 113, 093901 (2014)

    Article  ADS  Google Scholar 

  45. M.F. Limonov, M.V. Rybin, A.N. Poddubny, Y.S. Kivshar, Fano resonances in photonics. Nat. Photon. 11, 543–554 (2017)

    Article  Google Scholar 

  46. A. Yariv, Coupled-mode theory for guided-wave optics. IEEE J. Quantum Electron. 9, 919–933 (1973)

    Article  ADS  Google Scholar 

  47. S. Miller, Coupled wave theory and waveguide applications. Bell Labs Tech. J. 33, 661–719 (1954)

    Article  Google Scholar 

  48. N. Yin, G. Xu, Q. Yang, J. Zhao, X. Yang, J. Jin, W. Fu, M. Sun, Analysis of wireless energy transmission for implantable device based on coupled magnetic resonance. IEEE Trans. Magn. 48, 723–726 (2012)

    Article  ADS  Google Scholar 

  49. D.N. Maksimov, A.F. Sadreev, A.A. Lyapina, A.S. Pilipchuk, Coupled mode theory for acoustic resonators. Wave Motion 56, 52–66 (2015)

    Article  MathSciNet  Google Scholar 

  50. X. Piao, S. Yu, N. Park, Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator. Opt. Express 20, 18994–18999 (2012)

    Article  ADS  Google Scholar 

  51. X. Piao, S. Yu, S. Koo, K. Lee, N. Park, Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures. Opt. Express 19, 10907–10912 (2011)

    Article  ADS  Google Scholar 

  52. S. Yu, X. Piao, J. Hong, N. Park, Progress toward high-Q perfect absorption: a Fano antilaser. Phys. Rev. A 92, 011802 (2015)

    Article  ADS  Google Scholar 

  53. M.-A. Miri, M. Heinrich, R. El-Ganainy, D.N. Christodoulides, Supersymmetric optical structures. Phys. Rev. Lett. 110, 233902 (2013)

    Article  ADS  Google Scholar 

  54. S. Yu, X. Piao, J. Hong, N. Park, Interdimensional optical isospectrality inspired by graph networks. Optica 3, 836–839 (2016)

    Article  Google Scholar 

  55. S. Yu, X. Piao, N. Park, Target decoupling in coupled systems resistant to random perturbation. Sci. Rep. 7 (2017)

    Google Scholar 

  56. S. Yu, X. Piao, N. Park, Slow-light dispersion properties of multiatomic multiband coupled-resonator optical waveguides. Phys. Rev. A 85, 023823 (2012)

    Article  ADS  Google Scholar 

  57. S. Yu, X. Piao, S. Koo, J.H. Shin, S.H. Lee, B. Min, N. Park, Mode junction photonics with a symmetry-breaking arrangement of mode-orthogonal heterostructures. Opt. Express 19, 25500–25511 (2011)

    Article  ADS  Google Scholar 

  58. M.F. Yanik, S. Fan, M. Soljačić, J.D. Joannopoulos, All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry. Opt. Lett. 28, 2506–2508 (2003)

    Article  ADS  Google Scholar 

  59. A. Karalis, J.D. Joannopoulos, M. Soljačić, Efficient wireless non-radiative mid-range energy transfer. Ann. Phys. 323, 34–48 (2008)

    Article  ADS  Google Scholar 

  60. C. Manolatou, M. Khan, S. Fan, P.R. Villeneuve, H. Haus, J. Joannopoulos, Coupling of modes analysis of resonant channel add-drop filters. IEEE J. Quantum Electron. 35, 1322–1331 (1999)

    Article  ADS  Google Scholar 

  61. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, S. Noda, Dynamic control of the Q factor in a photonic crystal nanocavity. Nat. Mater. 6, 862–865 (2007)

    Article  ADS  Google Scholar 

  62. H. Lu, X. Liu, D. Mao, Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Phys. Rev. A 85, 053803 (2012)

    Article  ADS  Google Scholar 

  63. R.D. Kekatpure, E.S. Barnard, W. Cai, M.L. Brongersma, Phase-coupled plasmon-induced transparency. Phys. Rev. Lett. 104, 243902 (2010)

    Article  ADS  Google Scholar 

  64. Y. Tang, A.E. Cohen, Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science 332, 333–336 (2011)

    Article  ADS  Google Scholar 

  65. E. Hendry, T. Carpy, J. Johnston, M. Popland, R.V. Mikhaylovskiy, A.J. Lapthorn, S.M. Kelly, L.D. Barron, N. Gadegaard, M. Kadodwala, Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 5, 783–787 (2010)

    Article  ADS  Google Scholar 

  66. I.V. Lindell, A. Sihvola, S. Tretyakov, A. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House Antenna Library, 1994)

    Google Scholar 

  67. S.J. Orfanidis, Electromagnetic Waves and Antennas (Rutgers University New Brunswick, NJ, 2002)

    Google Scholar 

  68. A. Serdyukov, I. Semchenko, S. Tretyakov, A. Sihvola, Electromagnetics of Bi-Anisotropic Materials: Theory and Applications (Gordon and Breach Science, 2001)

    Google Scholar 

  69. U. Fano, Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866 (1961)

    Article  ADS  Google Scholar 

  70. F. Shafiei, F. Monticone, K.Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, X. Li, A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat. Nanotech. 8, 95–99 (2013)

    Article  ADS  Google Scholar 

  71. P. Fan, Z. Yu, S. Fan, M.L. Brongersma, Optical Fano resonance of an individual semiconductor nanostructure. Nat. Mater. (2014)

    Google Scholar 

  72. K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, M. Notomi, Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities. Opt. Express 21, 11877–11888 (2013)

    Article  ADS  Google Scholar 

  73. X. Yang, C. Husko, C.W. Wong, M. Yu, D.-L. Kwong, Observation of femtojoule optical bistability involving Fano resonances in high-Q/V m silicon photonic crystal nanocavities. Appl. Phys. Lett. 91, 051113-051113-051113 (2007)

    Article  ADS  Google Scholar 

  74. C. Ott, A. Kaldun, P. Raith, K. Meyer, M. Laux, J. Evers, C.H. Keitel, C.H. Greene, T. Pfeifer, Lorentz meets Fano in spectral line shapes: a universal phase and its laser control. Science 340, 716–720 (2013)

    Article  ADS  Google Scholar 

  75. A.N. Poddubny, M.V. Rybin, M.F. Limonov, Y.S. Kivshar, Fano interference governs wave transport in disordered systems. Nat. Commun. 3, 914 (2012)

    Article  ADS  Google Scholar 

  76. A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010)

    Article  ADS  Google Scholar 

  77. B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010)

    Article  ADS  Google Scholar 

  78. D.R. Smith, D. Schurig, Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys. Rev. Lett. 90 (2003)

    Google Scholar 

  79. M. Johnson, Bipolar spin switch. Science 260, 320–323 (1993)

    Article  ADS  Google Scholar 

  80. D. Frustaglia, M. Hentschel, K. Richter, Quantum transport in nonuniform magnetic fields: Aharonov-Bohm ring as a spin switch. Phys. Rev. Lett. 87, 256602 (2001)

    Article  ADS  Google Scholar 

  81. A. Tartakovskii, T. Wright, A. Russell, V. Fal’Ko, A. Van’kov, J. Skiba-Szymanska, I. Drouzas, R. Kolodka, M. Skolnick, P. Fry, Nuclear spin switch in semiconductor quantum dots. Phys. Rev. Lett. 98, 026806 (2007)

    Google Scholar 

  82. J.A. Dionne, K. Diest, L.A. Sweatlock, H.A. Atwater, PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. Nano Lett. 9, 897–902 (2009)

    Article  ADS  Google Scholar 

  83. H.W. Lee, G. Papadakis, S.P. Burgos, K. Chander, A. Kriesch, R. Pala, U. Peschel, H.A. Atwater, Nanoscale conducting oxide PlasMOStor. Nano Lett. 14, 6463–6468 (2014)

    Article  ADS  Google Scholar 

  84. J. Aitchison, D. Hutchings, J. Kang, G. Stegeman, A. Villeneuve, The nonlinear optical properties of AlGaAs at the half band gap. IEEE J. Quantum Electron. 33, 341–348 (1997)

    Article  ADS  Google Scholar 

  85. S. Droulias, V. Yannopapas, Broad-band giant circular dichroism in metamaterials of twisted chains of metallic nanoparticles. J. Phys. Chem. C 117, 1130–1135 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Research Foundation of Korea (NRF) through the Korea Research Fellowship Program (2016H1D3A1938069), the Basic Science Research Program (2016R1A6A3A04009723), and the Global Frontier Program (2014M3A6B3063708), all funded by the Korean government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianji Piao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piao, X., Yu, S., Park, N. (2018). Fano-resonant Excitations of Generalized Optical Spin Waves. In: Kamenetskii, E., Sadreev, A., Miroshnichenko, A. (eds) Fano Resonances in Optics and Microwaves. Springer Series in Optical Sciences, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-99731-5_2

Download citation

Publish with us

Policies and ethics