Skip to main content

Fano Resonances in Slanted Hyperbolic Metamaterial Cavities

  • Chapter
  • First Online:
  • 2667 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 219))

Abstract

In this chapter we present the possibility to engineer Fano resonances using multilayered hyperbolic metamaterials, either metal-dielectric or graphene-based multilayers. The proposed cavity designs are composed of multilayers with a central slanted part that allows the excitation of a propagative and an evanescent mode, the interference between these two modes being responsible for highly tunable resonances. The propagating mode can reach an extremely high effective index, making the realization of deeply subwavelength cavities possible, as small as 5 nm for visible light with a metal-dielectric multilayer, and 0.5 \(\upmu \)m in the terahertz regime with a graphene-based multilayer. The evanescent mode is rarely analyzed but plays an important role here, as its contribution determines the particular shape of the cavity characteristic. Moreover, these phenomena cannot be described using effective medium theory, and we provide a more rigorous analysis. The reported resonances are very sensitive to any structural changes, but also to small variations of the doping level for the graphene-based multilayers.

This chapter is based in part on material that appeared in [22] which has been revised and updated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. V. Shalaev, W. Cai, Optical Metamaterials: Fundamentals and Applications (Springer, Berlin, 2010)

    Google Scholar 

  2. M. Skorobogatiy, Nanostructured and Subwavelength Waveguides (John Wiley & Sons, New York, 2012)

    Book  Google Scholar 

  3. B. Li, Y. He, S. He, App. Phys. Exp. 8, 082601 (2015)

    Article  Google Scholar 

  4. A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Science 339, 1232009 (2013)

    Article  Google Scholar 

  5. T. Galfsky, H.N.S. Krishnamoorthy, W. Newman, E.E. Narimanov, Z. Jacob, V.M. Menon, Optica 2, 62 (2015)

    Article  Google Scholar 

  6. A.A. Orlov, S.V. Zhukovsky, I.V. Iorsh, P.A. Belov, Phot. Nano. Fund. Appl. 12, 213 (2014)

    Article  Google Scholar 

  7. W.D. Newman, C.L. Cortes, Z. Jacob, J. Opt. Soc. Am. B 30, 766 (2013)

    Article  ADS  Google Scholar 

  8. O.D. Miller, S.G. Johnson, A.W. Rodriguez, Phys. Rev. Lett. 112, 157402 (2014)

    Article  ADS  Google Scholar 

  9. K.V. Sreekanth, T. Biaglow, G. Strangi, J. Appl. Phys. 114, 134306 (2013)

    Article  ADS  Google Scholar 

  10. X. Yang, J. Yao, J. Rho, X. Yin, X. Zhang, Nat. Photonics 6, 450 (2012)

    Article  ADS  Google Scholar 

  11. D. Keene, M. Durach, Opt. Express 23, 18577 (2015)

    Article  ADS  Google Scholar 

  12. S. Feng, J. Elson, P. Overfelt, Opt. Express 13, 4113 (2005)

    Article  ADS  Google Scholar 

  13. A.A. Orlov, P.M. Voroshilov, P.A. Belov, Y.S. Kivshar, Phys. Rev. B 84, 045424 (2011)

    Article  ADS  Google Scholar 

  14. S.V. Zhukovsky, A.A. Orlov, V.E. Babicheva, A.V. Lavrinenko, J.E. Sipe, Phys. Rev. A 90, 013801 (2014)

    Article  ADS  Google Scholar 

  15. S.V. Zhukovsky, O. Kidwai, J.E. Sipe, Opt. Express 21, 14982 (2013)

    Article  ADS  Google Scholar 

  16. S.V. Zhukovsky, A. Andryieuski, J.E. Sipe, A.V. Lavrinenko, Phys. Rev. B 90, 155429 (2014)

    Article  ADS  Google Scholar 

  17. F. Vaianella, B. Maes, Phys. Rev. B 93, 165417 (2016)

    Article  ADS  Google Scholar 

  18. J. Elser, R. Wangberg, V.A. Podolskiy, E.E. Narimanov, Appl. Phys. Lett. 89, 261102 (2006)

    Article  ADS  Google Scholar 

  19. N. Vasilantonakis, M.E. Nasir, W. Dickson, G.A. Wurtz, A.V. Zayats, Laser Photonics Rev. 9, 345 (2015)

    Article  ADS  Google Scholar 

  20. C. Wu, A. Salandrino, X. Ni, X. Zhang, Phys. Rev. X 4, 021015 (2014)

    Google Scholar 

  21. Z. Huang, E.E. Narimanov, Opt. Express 21, 15020 (2013)

    Article  ADS  Google Scholar 

  22. F. Vaianella, B. Maes, Phys. Rev. B 94, 125442 (2016)

    Article  ADS  Google Scholar 

  23. M. Hasan, I. Iorsh. Days on Diffraction, 1 (2015)

    Google Scholar 

  24. A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010)

    Article  ADS  Google Scholar 

  25. S. Fan, J.D. Joannopoulos, Phys. Rev. B 65, 235112 (2002)

    Article  ADS  Google Scholar 

  26. I.V. Iorsh, I.V. Shadrivov, P.A. Belov, Y.S. Kivshar, Phys. Rev. B 88, 195422 (2013)

    Article  ADS  Google Scholar 

  27. B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, Nat. Mater. 9, 707 (2010)

    Article  ADS  Google Scholar 

  28. C.L. Cortes, W. Newman, S. Molesky, Z. Jacob, J. Opt. 14, 063001 (2012)

    Article  ADS  Google Scholar 

  29. B. Dastmalchi, P. Tassin, T. Koschny, C.M. Soukoulis, Adv. Opt. Mater. 4, 177 (2016)

    Article  Google Scholar 

  30. P. Tassin, T. Koschny, M. Kafesaki, C.M. Soukoulis, Nat. Photonics 6, 259 (2012)

    Article  ADS  Google Scholar 

  31. A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Nat. Photonics 7, 948 (2013)

    Article  ADS  Google Scholar 

  32. X. Ni, S. Ishii, M.D. Thoreson, V.M. Shalaev, S. Han, S. Lee, A.V. Kildishev, Opt. Express 19, 25242 (2011)

    Article  ADS  Google Scholar 

  33. I.S. Nefedov, C.A. Valagiannopoulos, S.M. Hashemi, E.I. Nefedov, Sci. Rep. 3, 1 (2013)

    Article  Google Scholar 

  34. A.D. Boardman, P. Egan, M. McCall, EPJ Appl. Metamater. 2, 1 (2015)

    Article  Google Scholar 

  35. G. Rosenblatt, M. Orenstein, Opt. Express 19, 20372 (2011)

    Article  ADS  Google Scholar 

  36. B. Maes, P. Bienstman, R. Baets, J. Opt. Soc. Am. B 22, 1778 (2005)

    Article  ADS  Google Scholar 

  37. X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, D. Wu, Adv. Mater. 22, 2743 (2010)

    Article  Google Scholar 

  38. Q. Bao, K.P. Loh, ACS Nano 6, 3677 (2012)

    Article  Google Scholar 

  39. R. Won, Nat. Photonics 4, 411 (2010)

    Article  ADS  Google Scholar 

  40. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Nat. Photonics 4, 611 (2010)

    Article  ADS  Google Scholar 

  41. I.V. Iorsh, I.S. Mukhin, I.V. Shadrivov, P.A. Belov, Y.S. Kivshar, Phys. Rev. B 87, 075416 (2013)

    Article  ADS  Google Scholar 

  42. A. Andryieuski, A.V. Lavrinenko, Phys. Rev. B 86, 121108(R) (2012)

    Article  ADS  Google Scholar 

  43. L. Zhang, Z. Zhang, C. Kang, B. Cheng, L. Chen, X. Yang, J. Wang, W. Li, B. Wang, Opt. Express 22, 14022 (2014)

    Article  ADS  Google Scholar 

  44. K.V. Sreekanth, A. De Luca, G. Strangi, Appl. Phys. Lett. 103, 023107 (2013)

    Article  ADS  Google Scholar 

  45. I.S. Nefedov, C.A. Valagiannopoulos, L.A. Melnikov, J. Opt. 15, 114003 (2013)

    Article  ADS  Google Scholar 

  46. M.A.K. Othman, C. Guclu, F. Capolino, Opt. Express 21, 7614 (2013)

    Article  ADS  Google Scholar 

  47. A.Y. Nikitin, F. Guinea, F. Garcia-Vidal, L. Martin-Moreno, Phys. Rev. B 84, 195446 (2011)

    Article  ADS  Google Scholar 

  48. L.A. Falkovsky, J. Phys. Conf. Ser. 129, 012004 (2008)

    Article  Google Scholar 

  49. L.A. Falkovsky, A.A. Varlamov, Eur. Phys. J. B 56, 281 (2007)

    Article  ADS  Google Scholar 

  50. C.H. Gan, H.S. Chu, E.P. Li, Phys. Rev. B 85, 125431 (2012)

    Article  ADS  Google Scholar 

  51. A. Fallahi, J. Perruisseau-Carrier, Phys. Rev. B 86, 195408 (2012)

    Article  ADS  Google Scholar 

  52. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Belgian Science Policy Office under the project “Photonics@be” (P7-35) and by the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA) in Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Vaianella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vaianella, F., Maes, B. (2018). Fano Resonances in Slanted Hyperbolic Metamaterial Cavities. In: Kamenetskii, E., Sadreev, A., Miroshnichenko, A. (eds) Fano Resonances in Optics and Microwaves. Springer Series in Optical Sciences, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-99731-5_16

Download citation

Publish with us

Policies and ethics