Skip to main content

Fano Resonances in Flat Band Networks

  • Chapter
  • First Online:
Fano Resonances in Optics and Microwaves

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 219))

Abstract

Linear wave equations on Hamiltonian lattices with translational invariance are characterized by an eigenvalue band structure in reciprocal space. Flat band lattices have at least one of the bands completely dispersionless. Such bands are coined flat bands. Flat bands occur in fine-tuned networks, and can be protected by (e.g. chiral) symmetries. Recently a number of such systems were realized in structured optical systems, exciton-polariton condensates, and ultracold atomic gases. Flat band networks support compact localized modes. Local defects couple these compact modes to dispersive states and generate Fano resonances in the wave propagation. Disorder (i.e. a finite density of defects) leads to a dense set of Fano defects, and to novel scaling laws in the localization length of disordered dispersive states. Nonlinearities can preserve the compactness of flat band modes, along with renormalizing (tuning) their frequencies. These strictly compact nonlinear excitations induce tunable Fano resonances in the wave propagation of a nonlinear flat band lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U. Fano, Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro d’arco. Il Nuovo Cimento 12, 154 (1935)

    Article  ADS  Google Scholar 

  2. U. Fano, Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866 (1961)

    ADS  MATH  Google Scholar 

  3. A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257 (2010)

    Article  ADS  Google Scholar 

  4. A. Johnson, C. Marcus, M. Hanson, A. Gossard, Charge sensing of excited states in an isolated double quantum dot. Phys. Rev. B 71, 115333 (2005)

    Article  ADS  Google Scholar 

  5. J. Göres, D. Goldhaber-Gordon, S. Heemeyer, M. Kastner, H. Shtrikman, D. Mahalu, U. Meirav, Fano resonances in electronic transport through a single-electron transistor. Phys. Rev. B 62, 2188 (2000)

    Article  ADS  Google Scholar 

  6. B.R. Bułka, P. Stefański, Fano and Kondo resonance in electronic current through nanodevices. Phys. Rev. Lett. 86, 5128 (2001)

    Article  ADS  Google Scholar 

  7. M. Torio, K. Hallberg, S. Flach, A. Miroshnichenko, M. Titov, Spin filters with Fano dots. Eur. Phys. J. B 37, 399 (2004)

    Article  ADS  Google Scholar 

  8. R. Franco, M. Figueira, E. Anda, Fano resonance in electronic transport through a quantum wire with a side-coupled quantum dot: X-boson treatment. Phys. Rev. B 67, 155301 (2003)

    Article  ADS  Google Scholar 

  9. M. Rybin, A. Khanikaev, M. Inoue, A. Samusev, M. Steel, G. Yushin, M. Limonov, Bragg scattering induces Fano resonance in photonic crystals. Photonics Nanostruct. 8, 86 (2010)

    Article  ADS  Google Scholar 

  10. M. Rybin, A. Khanikaev, M. Inoue, K. Samusev, M. Steel, G. Yushin, M. Limonov, Fano resonance between Mie and Bragg scattering in photonic crystals. Phys. Rev. Lett. 103, 023901 (2009)

    Article  ADS  Google Scholar 

  11. S. Mukhopadhyay, R. Biswas, C. Sinha, Signature of quantum interference and the Fano resonances in the transmission spectrum of bilayer graphene nanostructure. J. Appl. Phys. 110, 014306 (2011)

    Article  ADS  Google Scholar 

  12. P. Tong, B. Li, B. Hu, Wave transmission, phonon localization, and heat conduction of a one-dimensional Frenkel-Kontorova chain. Phys. Rev. B 59, 8639 (1999)

    Article  ADS  Google Scholar 

  13. S. Flach, D. Leykam, J.D. Bodyfelt, P. Matthies, A.S. Desyatnikov, Detangling flat bands into Fano lattices. EPL (Europhys. Lett.) 105, 30001 (2014)

    Article  ADS  Google Scholar 

  14. N. Perchikov, O.V. Gendelman, Flat bands and compactons in mechanical lattices. Phys. Rev. E 96, 052208 (2017)

    Article  Google Scholar 

  15. S.D. Huber, E. Altman, Bose condensation in flat bands. Phys. Rev. B 82, 184502 (2010)

    Article  ADS  Google Scholar 

  16. H. Aoki, M. Ando, H. Matsumura, Hofstadter butterflies for flat bands. Phys. Rev. B 54, R17296 (1996)

    Article  ADS  Google Scholar 

  17. D. Leykam, S. Flach, O. Bahat-Treidel, A.S. Desyatnikov, Flat band states: disorder and nonlinearity. Phys. Rev. B 88, 224203 (2013)

    Article  ADS  Google Scholar 

  18. D. Leykam, J.D. Bodyfelt, A.S. Desyatnikov, S. Flach, Localization of weakly disordered flat band states. Eur. Phys. J. B 90, 1 (2017)

    Article  ADS  Google Scholar 

  19. J.D. Bodyfelt, D. Leykam, C. Danieli, X. Yu, S. Flach, Flatbands under correlated perturbations. Phys. Rev. Lett. 113, 236403 (2014)

    Article  ADS  Google Scholar 

  20. C. Danieli, J.D. Bodyfelt, S. Flach, Flat-band engineering of mobility edges. Phys. Rev. B 91, 235134 (2015)

    Article  ADS  Google Scholar 

  21. R.A. Vicencio, C. Cantillano, L. Morales-Inostroza, B. Real, C. Mejía-Cortés, S. Weimann, A. Szameit, M.I. Molina, Observation of localized states in Lieb photonic lattices. Phys. Rev. Lett. 114, 245503 (2015)

    Article  ADS  Google Scholar 

  22. S. Weimann, L. Morales-Inostroza, B. Real, C. Cantillano, A. Szameit, R.A. Vicencio, Transport in sawtooth photonic lattices. Optics Lett. 41, 2414 (2016)

    Article  ADS  Google Scholar 

  23. T. Brandes, Coherent and collective quantum optical effects in mesoscopic systems. Phys. Rep. 408, 315 (2005)

    Article  ADS  Google Scholar 

  24. S. Taie, H. Ozawa, T. Ichinose, T. Nishio, S. Nakajima, Y. Takahashi, Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice, Sci. Adv. 1 (2015)

    Article  ADS  Google Scholar 

  25. M. Bellec, U. Kuhl, G. Montambaux, F. Mortessagne, Tight-binding couplings in microwave artificial graphene. Phys. Rev. B 88, 115437 (2013)

    Article  ADS  Google Scholar 

  26. W. Casteels, R. Rota, F. Storme, C. Ciuti, Probing photon correlations in the dark sites of geometrically frustrated cavity lattices. Phys. Rev. A 93, 043833 (2016)

    Article  ADS  Google Scholar 

  27. N. Masumoto, N.Y. Kim, T. Byrnes, K. Kusudo, A. Löffler, S. Höfling, A. Forchel, Y. Yamamoto, Exciton-polariton condensates with flat bands in a two-dimensional kagome lattice. New J. Phys. 14, 065002 (2012)

    Article  ADS  Google Scholar 

  28. W.X. Qiu, S. Li, J.H. Gao, Y. Zhou, F.C. Zhang, Designing an artificial Lieb lattice on a metal surface. Phys. Rev. B 94, 241409 (2016)

    Article  ADS  Google Scholar 

  29. A. Mielke, Ferromagnetism in the Hubbard model on line graphs and further considerations. J. Phys. A Math. Gen. 24, 3311 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  30. H. Tasaki, Ferromagnetism in the Hubbard models with degenerate single-electron ground states. Phys. Rev. Lett. 69, 1608 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  31. R.G. Dias, G.J.D., Origami rules for the construction of localized eigenstates of the Hubbard model in decorated lattices. Sci. Rep. 5, 16852 (2015)

    Google Scholar 

  32. L. Morales-Inostroza, R.A. Vicencio, Simple method to construct flat-band lattices. Phys. Rev. A 94, 043831 (2016)

    Article  ADS  Google Scholar 

  33. W. Maimaiti, A. Andreanov, H.C. Park, O. Gendelman, S. Flach, Compact localized states and flat-band generators in one dimension. Phys. Rev. B 95, 115135 (2017)

    Article  ADS  Google Scholar 

  34. A. Ramachandran, A. Andreanov, S. Flach, Chiral flat bands: existence, engineering, and stability. Phys. Rev. B 96, 161104 (2017)

    Article  ADS  Google Scholar 

  35. J. Vidal, B. Douçot, R. Mosseri, P. Butaud, Interaction induced delocalization for two particles in a periodic potential. Phys. Rev. Lett. 85, 3906 (2000)

    Article  ADS  Google Scholar 

  36. D. Leykam, S. Flach, Y.D. Chong, Flat bands in lattices with non-Hermitian coupling. Phys. Rev. B 96, 064305 (2017)

    Article  ADS  Google Scholar 

  37. R. Khomeriki, S. Flach, Landau-Zener Bloch oscillations with perturbed flat bands. Phys. Rev. Lett. 116, 245301 (2016)

    Article  ADS  Google Scholar 

  38. A.R. Kolovsky, A. Ramachandran, S. Flach, Topological Flat Wannier-Stark bands, Phys. Rev. B 97, 045120 (2018)

    Google Scholar 

  39. S. Peotta, P. Törmä, Superfluidity in topologically nontrivial flat bands. Nat. Commun. 6, 8944 (2015)

    Article  ADS  Google Scholar 

  40. R. Zhu, C. Cai, Fano resonance via quasibound states in time-dependent three-band pseudospin-1 Dirac-Weyl systems. J. Appl. Phys. 122, 124302 (2017)

    Article  ADS  Google Scholar 

  41. P.W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  42. Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D.N. Christodoulides, Y. Silberberg, Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008)

    Article  ADS  Google Scholar 

  43. J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, A. Aspect, Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 453, 891 (2008)

    Article  ADS  Google Scholar 

  44. G. Roati, C. D’errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, M. Inguscio, in Pushing The Frontiers of Atomic Physics (World Scientific, 2009), pp. 190–200

    Google Scholar 

  45. P. Lloyd, Exactly solvable model of electronic states in a three-dimensional disordered Hamiltonian: non-existence of localized states. J. Phys. C 2, 1717 (1969)

    Article  ADS  Google Scholar 

  46. D. Thouless, A relation between the density of states and range of localization for one dimensional random systems. J. Phys. C 5, 77 (1972)

    Article  ADS  Google Scholar 

  47. K. Ishii, Localization of eigenstates and transport phenomena in the one-dimensional disordered system. Progress Theor. Phys. Suppl. 53, 77 (1973)

    Article  ADS  Google Scholar 

  48. S. Aubry, G. André, Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Israel Phys. Soc 3, 18 (1980)

    MathSciNet  MATH  Google Scholar 

  49. A. Miroshnichenko, S. Flach, B. Malomed, Resonant scattering of solitons. Chaos 13, 874 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  50. S.W. Kim, S. Kim, The structure of eigenmodes and phonon scattering by discrete breathers in the discrete nonlinear Schrödinger chain. Physica D 141, 91 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  51. S. Flach, A. Miroshnichenko, V. Fleurov, M. Fistul, Fano resonances with discrete breathers. Phys. Rev. Lett. 90, 084101 (2003)

    Article  ADS  Google Scholar 

  52. R.A. Vicencio, J. Brand, S. Flach, Fano blockade by a Bose-Einstein condensate in an optical lattice. Phys. Rev. Lett. 98, 184102 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute for Basic Science, Project Code (IBS-R024-D1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajith Ramachandran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramachandran, A., Danieli, C., Flach, S. (2018). Fano Resonances in Flat Band Networks. In: Kamenetskii, E., Sadreev, A., Miroshnichenko, A. (eds) Fano Resonances in Optics and Microwaves. Springer Series in Optical Sciences, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-99731-5_13

Download citation

Publish with us

Policies and ethics