Skip to main content

Fano-resonances in High Index Dielectric Nanowires for Directional Scattering

  • Chapter
  • First Online:
Fano Resonances in Optics and Microwaves

Abstract

High refractive index dielectric nanostructures provide original optical properties thanks to the occurrence of size- and shape-dependent optical resonance modes. These modes commonly present a spectral overlap of broad, low-order modes (e.g. dipolar modes) and much narrower, higher-order modes. The latter are usually characterized by a rapidly varying frequency-dependent phase, which—in superposition with the lower order mode of approximately constant phase—leads to typical spectral features known as Fano resonances. Interestingly, such Fano resonances occur in dielectric nanostructures of the simplest shapes. In spheroidal nanoparticles, interference between broad magnetic dipole and narrower electric dipole modes can be observed. In high aspect-ratio structures like nanowires, either the electric or the magnetic dipolar mode (depending on the illumination conditions) interferes with higher order multipole contributions of the same nature (electric or magnetic). Using the analytical Mie theory, we analyze the occurrence of Fano resonances in high-index dielectric nanowires and discuss their consequences like unidirectional scattering. By means of numerical simulations, we furthermore study the impact on those Fano resonances of the shape of the nanowire cross-sections as well as the coupling of two parallel nanowires. The presented results show that all-dielectric nanostructures, even of simple shapes, provide a reliable low-loss alternative to plasmonic nanoantennas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.R. Abujetas, M.A.G. Mandujano, E.R. Méndez, J.A. Sánchez-Gil, High-contrast fano resonances in single semiconductor nanorods. ACS Photonics 4(7), 1814–1821 (2017)

    Article  Google Scholar 

  2. L. Aigouy, A. Cazé, P. Gredin, M. Mortier, R. Carminati, Mapping and quantifying electric and magnetic dipole luminescence at the nanoscale. Phys. Rev. Lett. 113(7), 076101 (2014). 00035

    Google Scholar 

  3. R. Alaee, M. Albooyeh, A. Rahimzadegan, M.S. Mirmoosa, Y.S. Kivshar, C. Rockstuhl, All-dielectric reciprocal bianisotropic nanoparticles. Phys. Rev. B, 92(24):245130 (2015). 00010

    Google Scholar 

  4. P. Albella, R. Alcaraz de la Osa, F. Moreno, S.A. Maier, Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: considerations for surface-enhanced spectroscopies. ACS Photonics 1(6), 524–529 (2014)

    Article  Google Scholar 

  5. P. Albella, M. Ameen Poyli, M.K. Schmidt, S.A. Maier, F. Moreno, J.J. Sáenz, J. Aizpurua, Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers. J. Phys. Chem. C 117(26), 13573–13584 (2013)

    Article  Google Scholar 

  6. P. Albella, T. Shibanuma, S.A. Maier, Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers. Sci. Rep. 5, 18322 (2015)

    Article  ADS  Google Scholar 

  7. A. Alu, N. Engheta, How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem? J. Nanophotonics 4(1), 041590–041590–17 (2010). 00055

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Bakhti, A.V. Tishchenko, X. Zambrana-Puyalto, N. Bonod, S.D. Dhuey, P. James Schuck, S. Cabrini, S. Alayoglu, N. Destouches, Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles. Sci. Rep. 6, 32061 (2016)

    Google Scholar 

  9. R.M. Bakker, D. Permyakov, Y.F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, A.I. Kuznetsov, Magnetic and electric hotspots with silicon nanodimers. Nano Lett. 15(3), 2137–2142 (2015)

    Google Scholar 

  10. D.G. Baranov, R.S. Savelev, S.V. Li, A.E. Krasnok, A. Alù, Modifying magnetic dipole spontaneous emission with nanophotonic structures. Laser Photonics Rev. 11(3), 1600268–n/a (2017)

    Article  ADS  Google Scholar 

  11. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998)

    Google Scholar 

  12. N. Bonod, A. Devilez, B. Rolly, S. Bidault, B. Stout, Ultracompact and unidirectional metallic antennas. Phys. Rev. B 82(11), 115429 (2010)

    Article  ADS  Google Scholar 

  13. N. Bontempi, K.E. Chong, H.W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Y.S. Kivshar, D.N. Neshev, Highly sensitive biosensors based on all-dielectric nanoresonators. Nanoscale 9(15), 4972–4980 (2017). 00000

    Article  Google Scholar 

  14. B.J.M. Brenny, D.R. Abujetas, D. van Dam, J.A. Sánchez-Gil, J.G. Rivas, A. Polman, Directional emission from leaky and guided modes in GaAs nanowires measured by cathodoluminescence. ACS Photonics 3(4), 677–684 (2016)

    Article  Google Scholar 

  15. M.L. Brongersma, Y. Cui, S. Fan, Light management for photovoltaics using high-index nanostructures. Nat. Mater. 13(5), 451–460 (2014). 00279

    Article  ADS  Google Scholar 

  16. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, L. Kuipers, Probing the magnetic field of light at optical frequencies. Science 326(5952), 550–553 (2009)

    Article  ADS  Google Scholar 

  17. M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R.F. Oulton, A.V. Bragas, S.A. Maier, Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat. Commun. 6, 7915 (2015)

    Article  ADS  Google Scholar 

  18. J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, S.A. Maier, Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas. Nano Lett. 17(2), 1219–1225 (2017). 00004

    Article  ADS  Google Scholar 

  19. S. Campione, L.I. Basilio, L.K. Warne, M.B. Sinclair, Tailoring dielectric resonator geometries for directional scattering and Huygens’ metasurfaces. Opt. Express 23(3), 2293 (2015)

    Article  ADS  Google Scholar 

  20. L. Cao, P. Fan, E.S. Barnard, A.M. Brown, M.L. Brongersma, Tuning the color of silicon nanostructures. Nano Lett. 10(7), 2649–2654 (2010)

    Article  ADS  Google Scholar 

  21. L. Cao, P. Fan, A.P. Vasudev, J.S. White, Y. Zongfu, W. Cai, J.A. Schuller, S. Fan, M.L. Brongersma, Semiconductor nanowire optical antenna solar absorbers. Nano Lett. 10(2), 439–445 (2010)

    Article  ADS  Google Scholar 

  22. L. Carletti, A. Locatelli, D. Neshev, C. De Angelis, Shaping the radiation pattern of second-harmonic generation from AlGaAs dielectric nanoantennas. ACS Photonics 3(8), 1500–1507 (2016). 00015

    Google Scholar 

  23. R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, Y. De Wilde, Electromagnetic density of states in complex plasmonic systems. Surf. Sci. Rep. 70(1), 1–41 (2015). 00040

    Article  ADS  Google Scholar 

  24. W.-S. Chang, J. Britt Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N.J. Halas, S. Link, A plasmonic Fano switch. Nano Lett. 12(9), 4977–4982 (2012)

    Article  ADS  Google Scholar 

  25. A.F. Cihan, A.G. Curto, S. Raza, P.G. Kik, M.L. Brongersma, Silicon Mie Resonators for Highly Directional Light Emission from Monolayer MoS2. Nat. Photonics 12, 284–290 (2018)

    Article  ADS  Google Scholar 

  26. A.G. Curto, G. Volpe, T.H. Taminiau, M.P. Kreuzer, R. Quidant, N.F. van Hulst, Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329(5994), 930–933 (2010). 00954

    Article  ADS  Google Scholar 

  27. M. Decker, I. Staude, Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics. J. Opt. 18(10), 103001 (2016)

    Article  ADS  Google Scholar 

  28. E. Devaux, A. Dereux, E. Bourillot, J.-C. Weeber, Y. Lacroute, J.-P. Goudonnet, C. Girard, Local detection of the optical magnetic field in the near zone of dielectric samples. Phys. Rev. B 62(15), 10504–10514 (2000)

    Article  ADS  Google Scholar 

  29. F. Dhalluin, T. Baron, P. Ferret, B. Salem, P. Gentile, J.-C. Harmand, Silicon nanowires: diameter dependence of growth rate and delay in growth. Appl. Phys. Lett. 96(13), 133109 (2010). 00043

    Article  ADS  Google Scholar 

  30. D.F. Edwards, Silicon (Si)*, in Handbook of Optical Constants of Solids, ed. by E.D. Palik (Academic Press, Burlington, 1997), pp. 547–569

    Chapter  Google Scholar 

  31. H.-S. Ee, J.-H. Kang, M.L. Brongersma, M.-K. Seo, Shape-dependent light scattering properties of subwavelength silicon nanoblocks. Nano Lett. 15(3), 1759–1765 (2015)

    Article  ADS  Google Scholar 

  32. A.B. Evlyukhin, S.M. Novikov, U. Zywietz, R.L. Eriksen, C. Reinhardt, S.I. Bozhevolnyi, B.N. Chichkov, Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 12(7), 3749–3755 (2012)

    Article  ADS  Google Scholar 

  33. P. Fan, U.K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, M.L. Brongersma, An invisible metal-semiconductor photodetector. Nat. Photonics 6(6), 380–385 (2012)

    Article  ADS  Google Scholar 

  34. P. Fan, Z. Yu, S. Fan, M.L. Brongersma, Optical Fano resonance of an individual semiconductor nanostructure. Nat. Mater. 13(5), 471–475 (2014). 00072

    Article  ADS  Google Scholar 

  35. S. Fan, W. Suh, J.D. Joannopoulos, Temporal coupled-mode theory for the Fano resonance in optical resonators. JOSA A 20(3), 569–572 (2003)

    Article  ADS  Google Scholar 

  36. U. Fano, Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124(6), 1866–1878 (1961)

    Article  ADS  MATH  Google Scholar 

  37. V. Flauraud, M. Reyes, R. Paniagua-Domínguez, A.I. Kuznetsov, J. Brugger, Silicon nanostructures for bright field full color prints. ACS Photonics (2017)

    Google Scholar 

  38. Y.H. Fu, A.I. Kuznetsov, A.E. Miroshnichenko, Y.F. Yu, B. Luk’yanchuk, Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4, 1527 (2013)

    Google Scholar 

  39. A. García-Etxarri, R. Gómez-Medina, L.S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, J.J. Sáenz, Strong magnetic response of submicron Silicon particles in the infrared. Opt. Express 19(6), 4815 (2011)

    Article  ADS  Google Scholar 

  40. J.C. Ginn, I. Brener, D.W. Peters, J.R. Wendt, J.O. Stevens, P.F. Hines, L.I. Basilio, L.K. Warne, J.F. Ihlefeld, P.G. Clem, M.B. Sinclair, Realizing optical magnetism from dielectric metamaterials. Phys. Rev. Lett. 108(9), 097402 (2012)

    Article  ADS  Google Scholar 

  41. Y. Guerfi, F. Carcenac, G. Larrieu, High resolution HSQ nanopillar arrays with low energy electron beam lithography. Microelectron. Eng. 110, 173–176 (2013)

    Article  Google Scholar 

  42. R. Guo, E. Rusak, I. Staude, J. Dominguez, M. Decker, C. Rockstuhl, I. Brener, D.N. Neshev, Y.S. Kivshar, Multipolar coupling in hybrid metal-dielectric metasurfaces. ACS Photonics 3(3), 349–353 (2016)

    Article  Google Scholar 

  43. D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, H. Rigneault, Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence. Opt. Express 16(19), 15297 (2008)

    Article  ADS  Google Scholar 

  44. R. Gómez-Medina, B. García-Cámara, I. Suárez-Lacalle, F. González, F. Moreno, M. Nieto-Vesperinas, J.J. Sáenz, Electric and magnetic dipolar response of germanium nanospheres: interference effects, scattering anisotropy, and optical forces. J. Nanophotonics 5(1), 053512–053512–9 (2011). 00000

    Article  ADS  Google Scholar 

  45. X.-L. Han, G. Larrieu, P.-F. Fazzini, E. Dubois, Realization of ultra dense arrays of vertical silicon nanowires with defect free surface and perfect anisotropy using a top-down approach. Microelectron. Eng. 88(8), 2622–2624 (2011)

    Article  Google Scholar 

  46. I.M. Hancu, A.G. Curto, M. Castro-López, M. Kuttge, N.F. van Hulst, Multipolar interference for directed light emission. Nano Lett. 14(1), 166–171 (2014)

    Article  ADS  Google Scholar 

  47. B. Hopkins, D.S. Filonov, A.E. Miroshnichenko, F. Monticone, A. Alú, Y.S. Kivshar, Interplay of magnetic responses in all-dielectric oligomers to realize magnetic fano resonances. ACS Photonics 2(6), 724–729 (2015)

    Article  Google Scholar 

  48. J.P. Hosemann, Computation of angular functions n and n occurring in the Mie theory. Appl. Opt. 10(6), 1452–1453 (1971)

    Article  ADS  Google Scholar 

  49. H. Kallel, A. Arbouet, G. BenAssayag, A. Chehaidar, A. Potié, B. Salem, T. Baron, V. Paillard, Tunable enhancement of light absorption and scattering in Si(1-x)Ge(x) nanowires. Phys. Rev. B 86(8), 085318 (2012)

    Article  ADS  Google Scholar 

  50. H. Kallel, A. Chehaidar, A. Arbouet, V. Paillard, Enhanced absorption of solar light in Ge/Si core-sheath nanowires compared to Si/Ge core-sheath and Si(1-x)Ge(x) nanowires: a theoretical study. J. Appl. Phys. 114(22), 224312 (2013)

    Article  ADS  Google Scholar 

  51. P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, M. Tribelsky, Giant field enhancement in high-index dielectric subwavelength particles. Sci. Rep. 7(1), 731 (2017). 00001

    Google Scholar 

  52. M. Kerker, D.-S. Wang, C.L. Giles, Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73(6), 765 (1983)

    Article  ADS  Google Scholar 

  53. A.I. Kuznetsov, A.E. Miroshnichenko, M.L. Brongersma, Y.S. Kivshar, B. Luk’yanchuk, Optically resonant dielectric nanostructures. Science 354(6314) (2016)

    Article  Google Scholar 

  54. A.I. Kuznetsov, A.E. Miroshnichenko, Y.H. Fu, J.B. Zhang, B. Luk’yanchuk, Magnetic light. Sci. Rep. 2, 492 (2012)

    Google Scholar 

  55. P.E. Landreman, H. Chalabi, J. Park, M.L. Brongersma, Fabry-Perot description for Mie resonances of rectangular dielectric nanowire optical resonators. Opt. Express 24(26), 29760–29772 (2016). 00000

    Article  ADS  Google Scholar 

  56. J. Li, N. Verellen, D. Vercruysse, T. Bearda, L. Lagae, P. Van Dorpe, All-dielectric antenna wavelength router with bidirectional scattering of visible light. Nano Lett. 16(7), 4396–4403 (2016). 00010

    Article  ADS  Google Scholar 

  57. Y. Li, M. Li, R. Li, F. Pengfei, L. Chu, D. Song, Method to determine the optimal silicon nanowire length for photovoltaic devices. Appl. Phys. Lett. 106(9), 091908 (2015)

    Article  ADS  Google Scholar 

  58. Z. Li, I. Kim, L. Zhang, M.Q. Mehmood, M.S. Anwar, M. Saleem, D. Lee, K.T. Nam, S. Zhang, B. Luk’yanchuk, Y. Wang, G. Zheng, J. Rho, C.-W. Qiu, Dielectric meta-holograms enabled with dual magnetic resonances in visible light. ACS Nano (2017)

    Google Scholar 

  59. M.F. Limonov, M.V. Rybin, A.N. Poddubny, Y.S. Kivshar, Fano resonances in photonics. Nat. Photonics 11(9), 543–554 (2017)

    Article  Google Scholar 

  60. S. Liu, M.B. Sinclair, S. Saravi, G.A. Keeler, Y. Yang, J. Reno, G.M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, I. Brener, Resonantly enhanced second-harmonic generation Using III-V semiconductor all-dielectric metasurfaces. Nano Lett. 16(9), 5426–5432 (2016)

    Article  ADS  Google Scholar 

  61. W. Liu, Superscattering shaping for radially anisotropic nanowires through multipolar interferences. arXiv: 1704.07994 [physics], Apr 2017. 00001

  62. W. Liu, A.E. Miroshnichenko, R.F. Oulton, D.N. Neshev, O. Hess, Y.S. Kivshar, Scattering of core-shell nanowires with the interference of electric and magnetic resonances. Opt. Lett. 38(14), 2621–2624 (2013). 00037

    Article  ADS  Google Scholar 

  63. W. Liu, J. Zhang, B. Lei, H. Haojun, A.E. Miroshnichenko, Invisible nanowires with interfering electric and toroidal dipoles. Opt. Lett. 40(10), 2293 (2015)

    Article  ADS  Google Scholar 

  64. B.S. Luk’yanchuk, N.V. Voshchinnikov, R. Paniagua-Domínguez, A.I. Kuznetsov, Optimum forward light scattering by spherical and spheroidal dielectric nanoparticles with high refractive index. ACS Photonics 2(7), 993–999 (2015)

    Article  Google Scholar 

  65. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer US, 2010)

    Google Scholar 

  66. S.A. Mann, R.R. Grote, R.M. Osgood, A. Alú, E.C. Garnett, Opportunities and limitations for nanophotonic structures to exceed the Shockley–Queisser limit. ACS Nano (2016)

    Google Scholar 

  67. O.J.F. Martin, C. Girard, A. Dereux, Generalized field propagator for electromagnetic scattering and light confinement. Phys. Rev. Lett. 74(4), 526–529 (1995)

    Article  ADS  Google Scholar 

  68. J.C. Maxwell, A dynamical theory of the electromagnetic field. Philos. Trans. R. Soc. Lond. 155, 459–512 (1865)

    Article  ADS  Google Scholar 

  69. E.V. Melik-Gaykazyan, M.R. Shcherbakov, A.S. Shorokhov, I. Staude, I. Brener, D.N. Neshev, Y.S. Kivshar, A.A. Fedyanin, Third-harmonic generation from Mie-type resonances of isolated all-dielectric nanoparticles. Philos. Trans. R. Soc. A 375(2090), 20160281 (2017). 00000

    Article  ADS  MathSciNet  Google Scholar 

  70. A. Mirzaei, A.E. Miroshnichenko, Electric and magnetic hotspots in dielectric nanowire dimers. Nanoscale 7(14), 5963–5968 (2015)

    Article  ADS  Google Scholar 

  71. A. Mirzaei, A.E. Miroshnichenko, I.V. Shadrivov, Y.S. Kivshar, All-dielectric multilayer cylindrical structures for invisibility cloaking. Sci. Rep. 5(9574), 00014 (2015)

    Google Scholar 

  72. H. Moriceau, F. Fournel, F. Rieutord. Materials and manufacturing techniques for SOI wafer technology, in Silicon-on-Insulator (SOI) Technology, ed. by O. Kononchuk, B.-Y. Nguyen (Woodhead Publishing, 2014), pp. 38–46. 00000

    Google Scholar 

  73. O.L. Muskens, J.G. Rivas, R.E. Algra, E.P.A.M. Bakkers, A. Lagendijk, Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett. 8(9), 2638–2642 (2008). 00405

    Article  ADS  Google Scholar 

  74. P. Mühlschlegel, H.-J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Resonant optical antennas. Science 308(5728), 1607–1609 (2005)

    Article  ADS  Google Scholar 

  75. M. Nieto-Vesperinas, R. Gomez-Medina, J.J. Saenz, Angle-suppressed scattering and optical forces on submicrometer dielectric particles. JOSA A 28(1), 54–60 (2011). 00107

    Article  ADS  Google Scholar 

  76. R. Paniagua-Domínguez, G. Grzela, J. Gómez Rivas, J.A. Sánchez-Gil, Enhanced and directional emission of semiconductor nanowires tailored through leaky/guided modes. Nanoscale 5(21), 10582–10590 (2013). 00000

    Article  ADS  Google Scholar 

  77. R. Paniagua-Domínguez, Y.F. Yu, A.E. Miroshnichenko, L.A. Krivitsky, Y.H. Fu, V. Valuckas, L. Gonzaga, Y.T. Toh, A.Y.S. Kay, B. Luk’yanchuk, A.I. Kuznetsov, Generalized Brewster effect in dielectric metasurfaces. Nat. Commun. 7, 10362 (2016)

    Google Scholar 

  78. M. Paulus, O.J.F. Martin, Green’s tensor technique for scattering in two-dimensional stratified media. Phys. Rev. E 63(6), 066615 (2001). 00072

    Google Scholar 

  79. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science 312(5781), 1780–1782 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. S. Person, M. Jain, Z. Lapin, J.J. Sáenz, G. Wicks, L. Novotny, Demonstration of zero optical backscattering from single nanoparticles. Nano Lett. 13(4), 1806–1809 (2013)

    Article  ADS  Google Scholar 

  81. M. Peter, A. Hildebrandt, C. Schlickriede, K. Gharib, T. Zentgraf, J. Förstner, S. Linden, Directional emission from dielectric leaky-wave nanoantennas. Nano Lett. 17(7), 4178–4183 (2017)

    Article  ADS  Google Scholar 

  82. F. Priolo, T. Gregorkiewicz, M. Galli, T.F. Krauss, Silicon nanostructures for photonics and photovoltaics. Nat. Nanotechnol. 9(1), 19–32 (2014)

    Article  ADS  Google Scholar 

  83. J. Proust, F. Bedu, B. Gallas, I. Ozerov, N. Bonod, All-dielectric colored metasurfaces with silicon Mie resonators. ACS Nano (2016)

    Google Scholar 

  84. E.M. Purcell, Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

  85. M. Ramezani, A. Casadei, G. Grzela, F. Matteini, G. Tütüncüoglu, D. Rüffer, Fontcuberta i Morral A, Rivas, J.G.: Hybrid semiconductor nanowire-metallic Yagi-Uda antennas. Nano Lett. 15(8), 4889–4895 (2015)

    Article  ADS  Google Scholar 

  86. R. Regmi, J. Berthelot, P.M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M.F. García-Parajó, S. Bidault, J. Wenger, N. Bonod, All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules. Nano Lett. 16(8), 5143–5151 (2016)

    Article  ADS  Google Scholar 

  87. D. Rocco, L. Carletti, A. Locatelli, C. De Angelis, Controlling the directivity of all-dielectric nanoantennas excited by integrated quantum emitters. JOSA B 34(9), 1918–1922 (2017)

    Article  ADS  Google Scholar 

  88. B. Rolly, B. Bebey, S. Bidault, B. Stout, N. Bonod, Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances. Phys. Rev. B 85(24), 245432 (2012)

    Article  ADS  Google Scholar 

  89. B. Rolly, J.-M. Geffrin, R. Abdeddaim, B. Stout, N. Bonod, Controllable emission of a dipolar source coupled with a magneto-dielectric resonant subwavelength scatterer. Sci. Rep. 3 (2013)

    Google Scholar 

  90. B. Rolly, B. Stout, S. Bidault, N. Bonod, Crucial role of the emitter-particle distance on the directivity of optical antennas. Opt. Lett. 36(17), 3368 (2011)

    Article  ADS  Google Scholar 

  91. B. Rolly, B. Stout, N. Bonod, Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles. Opt. Express 20(18), 20376 (2012)

    Article  ADS  Google Scholar 

  92. M.V. Rybin, K.B. Samusev, I.S. Sinev, G. Semouchkin, E. Semouchkina, Y.S. Kivshar, M.F. Limonov, Mie scattering as a cascade of Fano resonances. Opt. Express 21(24), 30107–30113 (2013)

    Article  ADS  Google Scholar 

  93. M.K. Schmidt, R. Esteban, J.J. Sáenz, I. Suárez-Lacalle, S. Mackowski, J. Aizpurua, Dielectric antennas—a suitable platform for controlling magnetic dipolar emission. Opt. Express 20(13), 13636 (2012)

    Article  ADS  Google Scholar 

  94. P.J. Schuck, D.P. Fromm, A. Sundaramurthy, G.S. Kino, W.E. Moerner, Improving the Mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94(1), 017402 (2005)

    Article  ADS  Google Scholar 

  95. M.R. Shcherbakov, D.N. Neshev, B. Hopkins, A.S. Shorokhov, I. Staude, E.V. Melik-Gaykazyan, M. Decker, A.A. Ezhov, A.E. Miroshnichenko, I. Brener, A.A. Fedyanin, Y.S. Kivshar, Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett. 14(11), 6488–6492 (2014)

    Article  ADS  Google Scholar 

  96. M.R. Shcherbakov, A.S. Shorokhov, D.N. Neshev, B. Hopkins, I. Staude, E.V. Melik-Gaykazyan, A.A. Ezhov, A.E. Miroshnichenko, I. Brener, A.A. Fedyanin, Y.S. Kivshar, Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers. ACS Photonics 2(5), 578–582 (2015)

    Article  Google Scholar 

  97. M.R. Shcherbakov, P.P. Vabishchevich, A.S. Shorokhov, K.E. Chong, D.-Y. Choi, I. Staude, A.E. Miroshnichenko, D.N. Neshev, A.A. Fedyanin, Y.S. Kivshar, Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett. 15(10), 6985–6990 (2015)

    Article  ADS  Google Scholar 

  98. T. Shegai, S. Chen, V.D. Miljković, G. Zengin, P. Johansson, M. Käll, A bimetallic nanoantenna for directional colour routing. Nat. Commun. 2, ncomms1490 (2011)

    Google Scholar 

  99. T. Shibanuma, P. Albella, S. Maier, Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas. Nanoscale 8, 14184–14192 (2016)

    Article  ADS  Google Scholar 

  100. T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, S.A. Maier, Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers. ACS Photonics 4(3), 489–494 (2017)

    Article  Google Scholar 

  101. P. Spinelli, A. Polman, Light trapping in thin crystalline Si solar cells using surface Mie scatterers. IEEE J. Photovolt. 4(2), 554–559 (2014)

    Article  Google Scholar 

  102. I. Staude, A.E. Miroshnichenko, M. Decker, N.T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T.S. Luk, D.N. Neshev, I. Brener, Y. Kivshar, Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 7(9), 7824–7832 (2013). 00295

    Article  Google Scholar 

  103. D.J. Traviss, M.K. Schmidt, J. Aizpurua, O.L. Muskens, Antenna resonances in low aspect ratio semiconductor nanowires. Opt. Express 23(17), 22771 (2015)

    Article  ADS  Google Scholar 

  104. V. Valuckas, R. Paniagua-Domínguez, Y.H. Fu, B. Luk’yanchuk, A.I. Kuznetsov, Direct observation of resonance scattering patterns in single silicon nanoparticles. Appl. Phys. Lett. 110(9), 091108 (2017). 00000

    Article  ADS  Google Scholar 

  105. L. Wang, S. Kruk, L. Xu, M. Rahmani, D. Smirnova, A. Solntsev, I. Kravchenko, D. Neshev, Y. Kivshar, Shaping the third-harmonic radiation from silicon nanodimers. Nanoscale 9(6), 2201–2206 (2017). 00000

    Article  Google Scholar 

  106. S.M. Wells, I.A. Merkulov, I.I. Kravchenko, N.V. Lavrik, M.J. Sepaniak, Silicon nanopillars for field-enhanced surface spectroscopy. ACS Nano 6(4), 2948–2959 (2012). 00052

    Article  Google Scholar 

  107. P.R. Wiecha, A. Arbouet, C. Girard, T. Baron, V. Paillard, Origin of second-harmonic generation from individual silicon nanowires. Phys. Rev. B 93(12), 125421 (2016). 00000

    Google Scholar 

  108. P.R. Wiecha, A. Arbouet, C. Girard, A. Lecestre, G. Larrieu, V. Paillard, Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas. Nat. Nanotechnol. 12(2), 163–169 (2017). 00002

    Article  ADS  Google Scholar 

  109. P.R. Wiecha, A. Arbouet, H. Kallel, P. Periwal, T. Baron, V. Paillard, Enhanced nonlinear optical response from individual silicon nanowires. Phys. Rev. B 91(12), 121416 (2015). 00000

    Google Scholar 

  110. P.R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. Colas des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, V. Paillard, Strongly directional scattering from dielectric nanowires. ACS Photonics 4(8), 2036–2046 (2017)

    Article  Google Scholar 

  111. P.R. Wiecha, C. Girard, A. Cuche, V. Paillard, A. Arbouet, Decay Rate of Magnetic Dipoles near Non-magnetic Nanostructures. arXiv:1707.07006 [cond-mat, physics:physics], July 2017

  112. T. Wood, M. Naffouti, J. Berthelot, T. David, J.-B. Claude, L. Métayer, A. Delobbe, L. Favre, A. Ronda, I. Berbezier, N. Bonod, M. Abbarchi, All-dielectric color filters using SiGe-based Mie resonator arrays. ACS Photonics 4(4), 873–883 (2017)

    Article  Google Scholar 

  113. X.Y.Z. Xiong, L.J. Jiang, W.E.I. Sha, Y.H. Lo, W.C. Chew, Compact nonlinear Yagi-Uda nanoantennas. Sci. Rep. 6, 18872 (2016)

    Google Scholar 

  114. J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, G. Yang, Directional Fano resonance in a silicon nanosphere dimer. ACS Nano 9(3), 2968–2980 (2015). 00049

    Article  Google Scholar 

  115. Y. Yang, Q. Li, M. Qiu, Controlling the angular radiation of single emitters using dielectric patch nanoantennas. Appl. Phys. Lett. 107(3), 031109 (2015)

    Article  ADS  Google Scholar 

  116. K. Yao, Y. Liu, Controlling electric and magnetic resonances for ultracompact nanoantennas with tunable directionality. ACS Photonics (2016)

    Google Scholar 

  117. X. Zambrana-Puyalto, I. Fernandez-Corbaton, M.L. Juan, X. Vidal, G. Molina-Terriza, Duality symmetry and Kerker conditions. Opt. Lett. 38(11), 1857 (2013)

    Article  ADS  Google Scholar 

  118. W. Zhao, B. Liu, H. Jiang, J. Song, Y. Pei, Y. Jiang, Full-color hologram using spatial multiplexing of dielectric metasurface. Opt. Lett. 41(1), 147 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Paillard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wiecha, P.R. et al. (2018). Fano-resonances in High Index Dielectric Nanowires for Directional Scattering. In: Kamenetskii, E., Sadreev, A., Miroshnichenko, A. (eds) Fano Resonances in Optics and Microwaves. Springer Series in Optical Sciences, vol 219. Springer, Cham. https://doi.org/10.1007/978-3-319-99731-5_12

Download citation

Publish with us

Policies and ethics