Advertisement

The Impact of Program Transformations on Static Program Analysis

  • Kedar S. Namjoshi
  • Zvonimir PavlinovicEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11002)

Abstract

Semantics-preserving program transformations, such as those carried out by an optimizing compiler, can affect the results of static program analyses. In the best cases, a transformation increases precision or allows a simpler analysis to replace a complex one. In other cases, transformations have the opposite effect, reducing precision. This work constructs a theoretical framework to analyze this intriguing phenomenon. The framework provides a simple, uniform explanation for precision changes, linking them to bisimulation relations that justify the correctness of a transformation. It offers a mechanism for recovering lost precision through the systematic construction of a new, bisimulating analysis. Furthermore, it is shown that program analyses defined over a class of composite domains can be factored into a program transformation followed by simpler, equally precise analyses of the target program.

Notes

Acknowledgments

This work was supported, in part, by NSF grant CCF-1563393 from the National Science Foundation. We would like to thank Patrick Cousot, Thomas Wies, and Siddharth Krishna for helpful discussions.

References

  1. 1.
    Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput. Sci. 82(2), 253–284 (1991)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools. Addison-Wesley series in Computer Science/World Student Series Edition. Addison-Wesley, Reading (1986)Google Scholar
  3. 3.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  4. 4.
    Carter, M., He, S., Whitaker, J., Rakamaric, Z., Emmi, M.: SMACK software verification toolchain. In: Proceedings of the 38th International Conference on Software Engineering - Companion Volume, ICSE 2016, Austin, TX, USA, 14–22 May 2016, pp. 589–592 (2016)Google Scholar
  5. 5.
    Cousot, P., Cousot, R.: Constructive versions of Tarski’s fixed point theorems. Pac. J. Math. 81(1), 43–57 (1979)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cousot, P.: Abstracting induction by extrapolation and interpolation. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 19–42. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46081-8_2CrossRefzbMATHGoogle Scholar
  7. 7.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Conference Record of the Fourth ACM Symposium on Principles of Programming Languages, Los Angeles, California, USA, January 1977, pp. 238–252 (1977)Google Scholar
  8. 8.
    Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Conference Record of the Sixth Annual ACM Symposium on Principles of Programming Languages, San Antonio, Texas, USA, January 1979, pp. 269–282 (1979)Google Scholar
  9. 9.
    Cousot, P., Cousot, R.: Systematic design of program transformation frameworks by abstract interpretation. In: Launchbury, J., Mitchell, J.C. (eds.) Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Portland, OR, USA, 16–18 January 2002, pp. 178–190. ACM (2002)Google Scholar
  10. 10.
    Cousot, P., Cousot, R., Logozzo, F., Barnett, M.: An abstract interpretation framework for refactoring with application to extract methods with contracts. In: Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2012, Part of SPLASH 2012, Tucson, AZ, USA, 21–25 October 2012, pp. 213–232 (2012)Google Scholar
  11. 11.
    Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables of a program. In: Conference Record of the Fifth Annual ACM Symposium on Principles of Programming Languages, Tucson, Arizona, USA, January 1978, pp. 84–96 (1978)Google Scholar
  12. 12.
    Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics. Springer, New York (1990).  https://doi.org/10.1007/978-1-4612-3228-5CrossRefzbMATHGoogle Scholar
  13. 13.
    Fähndrich, M., Logozzo, F.: Static contract checking with abstract interpretation. In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 10–30. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-18070-5_2CrossRefGoogle Scholar
  14. 14.
    Fedyukovich, G., Gurfinkel, A., Sharygina, N.: Property directed equivalence via abstract simulation. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016, Part II. LNCS, vol. 9780, pp. 433–453. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-41540-6_24CrossRefGoogle Scholar
  15. 15.
    Giacobazzi, R., Ranzato, F.: Refining and compressing abstract domains. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 771–781. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-63165-8_230CrossRefzbMATHGoogle Scholar
  16. 16.
    Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations complete. J. ACM 47(2), 361–416 (2000)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 343–361. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21690-4_20CrossRefGoogle Scholar
  18. 18.
    Kang, J., Kim, Y., Song, Y., Lee, J., Park, S., Shin, M.D., Kim, Y., Cho, S., Choi, J., Hur, C.-K., Yi, K.: CRELLVM: verified credible compilation for LLVM. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2018, Philadelphia, PA, USA, 18–22 June 2018, pp. 631–645 (2018)Google Scholar
  19. 19.
    Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program analysis & transformation. In: 2nd IEEE/ACM International Symposium on Code Generation and Optimization (CGO 2004), San Jose, CA, USA, 20–24 March 2004, pp. 75–88 (2004)Google Scholar
  20. 20.
    Leroy, X.: Formal certification of a compiler back-end or: programming a compiler with a proof assistant. In: Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2006, Charleston, South Carolina, USA, 11–13 January 2006, pp. 42–54 (2006)Google Scholar
  21. 21.
    Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115 (2009)CrossRefGoogle Scholar
  22. 22.
    Logozzo, F., Fähndrich, M.: On the relative completeness of bytecode analysis versus source code analysis. In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959, pp. 197–212. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78791-4_14CrossRefGoogle Scholar
  23. 23.
    Miné, A.: A new numerical abstract domain based on difference-bound matrices. In: Danvy, O., Filinski, A. (eds.) PADO 2001. LNCS, vol. 2053, pp. 155–172. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44978-7_10CrossRefGoogle Scholar
  24. 24.
    Miné, A.: A few graph-based relational numerical abstract domains. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 117–132. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45789-5_11CrossRefGoogle Scholar
  25. 25.
    Miné, A.: The octagon abstract domain. High. Order Symb. Comput. 19(1), 31–100 (2006)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Miné, A.: Symbolic methods to enhance the precision of numerical abstract domains. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 348–363. Springer, Heidelberg (2005).  https://doi.org/10.1007/11609773_23CrossRefGoogle Scholar
  27. 27.
    Namjoshi, K.S.: Lifting temporal proofs through abstractions. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 174–188. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36384-X_16CrossRefGoogle Scholar
  28. 28.
    Namjoshi, K.S., Zuck, L.D.: Witnessing program transformations. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 304–323. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38856-9_17CrossRefGoogle Scholar
  29. 29.
    Ranzato, F., Tapparo, F.: Making abstract model checking strongly preserving. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 411–427. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45789-5_29CrossRefGoogle Scholar
  30. 30.
    Ranzato, F., Tapparo, F.: Strong preservation as completeness in abstract interpretation. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 18–32. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24725-8_3CrossRefGoogle Scholar
  31. 31.
    Ranzato, F., Tapparo, F.: An abstract interpretation-based refinement algorithm for strong preservation. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 140–156. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-31980-1_10CrossRefzbMATHGoogle Scholar
  32. 32.
    Ranzato, F., Tapparo, F.: Generalized strong preservation by abstract interpretation. J. Log. Comput. 17(1), 157–197 (2007)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Rinard, M.: Credible compilation. Technical report (1999). In: Proceedings of CC 2001: International Conference on Compiler ConstructionGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Bell Laboratories, NokiaMurray HillUSA
  2. 2.New York UniversityNew York CityUSA

Personalised recommendations