Skip to main content

A Reduced Product of Absolute and Relative Error Bounds for Floating-Point Analysis

  • Conference paper
  • First Online:
Static Analysis (SAS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11002))

Included in the following conference series:

Abstract

Rigorous estimation of bounds on errors in finite precision computation has become a key point of many formal verification tools. The primary interest of the use of such tools is generally to obtain worst-case bounds on the absolute errors. However, the natural bound on the elementary error committed by each floating-point arithmetic operation is a bound on the relative error, which suggests that relative error bounds could also play a role in the process of computing tight error estimations. In this work, we introduce a very simple interval-based abstraction, combining absolute and relative error propagations. We demonstrate with a prototype implementation how this simple product allows us in many cases to improve absolute error bounds, and even to often favorably compare with state-of-the art tools, that rely on much more costly relational abstractions or optimization-based estimations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://fpbench.org.

  2. 2.

    Our abstract domain should be included in an upcoming release of Frama-C/Eva (https://frama-c.com/value.html).

  3. 3.

    http://fpbench.org.

  4. 4.

    http://www.lix.polytechnique.fr/Labo/Maxime.Jacquemin/numerors.c for the examples.

References

  1. Comba, J.L.D., Stolfi, J.: Affine arithmetic and its applications to computer graphics. In: SEBGRAPI 1993 (1993)

    Google Scholar 

  2. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In: Proceedings of the Second International Symposium on Programming, pp. 106–130. Dunod, Paris (1976)

    Google Scholar 

  3. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In: Proceedings of ISOP 1976, pp. 106–130. Dunod, Paris (1976)

    Google Scholar 

  4. Darulova, E., Kuncak, V.: Trustworthy numerical computation in Scala. In: OOPSLA (2011)

    Google Scholar 

  5. Darulova, E., Kuncak, V.: Sound compilation of reals. In: POPL 2014, pp. 235–248, New York, NY, USA. ACM (2014)

    Google Scholar 

  6. Daumas, M., Melquiond, G.: Certification of bounds on expressions involving rounded operators. ACM Trans. Math. Softw. 37(1), 2:1–2:20 (2010)

    Google Scholar 

  7. Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.: Towards an industrial use of FLUCTUAT on safety-critical avionics software. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp. 53–69. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04570-7_6

    Chapter  Google Scholar 

  8. Goubault, E.: Static analyses of the precision of floating-point operations. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 234–259. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-47764-0_14

    Chapter  MATH  Google Scholar 

  9. Goubault, E., Putot, S.: Static analysis of finite precision computations. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 232–247. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_17

    Chapter  Google Scholar 

  10. Goubault, E., Putot, S.: Robustness analysis of finite precision implementations. In: APLAS, pp. 50–57 (2013)

    Google Scholar 

  11. Izycheva, A., Darulova, E.: On sound relative error bounds for floating-point arithmetic. In: Proceedings of the 17th Conference on Formal Methods in Computer-Aided Design, FMCAD 2017, pp. 15–22 (2017)

    Google Scholar 

  12. Magron, V., Constantinides, G., Donaldson, A.: Certified roundoff error bounds using semidefinite programming. Submitted

    Google Scholar 

  13. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis (2009)

    Google Scholar 

  14. Wilcox, J.-R., Panchekha, P., Sanchez-Stern, A., Tatlock, Z.: Automatically improving accuracy for floating point expressions. In: Grove, D., Blackburn, S. (eds.) PLDI 2015, pp. 1–11. ACM (2015)

    Google Scholar 

  15. Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-point summation part i: faithful rounding. SIAM J. Sci. Comput. 31(1), 189–224 (2008)

    Google Scholar 

  16. Solovyev, A., Jacobsen, C., Rakamarić, Z., Gopalakrishnan, G.: Rigorous estimation of floating-point round-off errors with symbolic taylor expansions. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 532–550. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19249-9_33

    Chapter  Google Scholar 

  17. Titolo, L., Feliú, M.A., Moscato, M., Muñoz, C.A.: An abstract interpretation framework for the round-off error analysis of floating-point programs. Verification, Model Checking, and Abstract Interpretation. LNCS, vol. 10747, pp. 516–537. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73721-8_24

    Chapter  Google Scholar 

Download references

Acknowledgments

The work was partially supported by ANR project ANR-15-CE25-0002. We also gratefully acknowledge the help of the anonymous reviewers and Jérôme Féret, in improving the presentation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Jacquemin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jacquemin, M., Putot, S., Védrine, F. (2018). A Reduced Product of Absolute and Relative Error Bounds for Floating-Point Analysis. In: Podelski, A. (eds) Static Analysis. SAS 2018. Lecture Notes in Computer Science(), vol 11002. Springer, Cham. https://doi.org/10.1007/978-3-319-99725-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99725-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99724-7

  • Online ISBN: 978-3-319-99725-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics