Skip to main content

Inverse Problems and Total Variation Minimization for Iterated Function Systems on Maps

  • Conference paper
  • First Online:
Recent Advances in Mathematical and Statistical Methods (AMMCS 2017)

Abstract

We consider the inverse problem associated with iterated function system with greyscale maps (IFSM): Given a target function f, find an IFSM, such that its fixed point \(\bar{f}\) is sufficiently close to f in the \(L^p\) distance. In this paper, we extend the collage-based method by adding a total variation term to the collage distance, with the notion that the solution to this modified minimization problem turns out to be less noisy than the one without this term. Numerical experiments are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnsley, M.F.: Fractals Everywhere. Academic Press, New York (1989)

    Google Scholar 

  2. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20(6), 19641977 (1999)

    Article  MathSciNet  Google Scholar 

  3. Forte, B., Vrscay, E.R.: Solving the inverse problem for function and image approximation using iterated function systems. Dyn. Contin. Discret. Impuls. Syst. 1(2), 177–232 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Forte, B., Vrscay, E.R.: Theory of generalized fractal transforms. In: Fisher, Y. (Ed.) Fractal Image Encoding and Analysis, NATO ASI Series F 159:14568. New York, Springer (1998)

    Google Scholar 

  5. Goldluecke, B., Strekalovskiy, E., Cremers, D.: The natural vectorial total variation which arises from geometric measure theory. SIAM J. Imaging Sci. 5(2), 537–563 (2012)

    Article  MathSciNet  Google Scholar 

  6. Hutchinson, J.: Fractals and self-similarity. Indiana Univ. J. Math. 30, 713–747 (1981)

    Article  MathSciNet  Google Scholar 

  7. Iacus, S., La Torre, D.: A comparative simulation study on the IFS distribution function estimator. Nonlinear Anal. Real World Appl. 6(5), 858–873 (2005)

    Google Scholar 

  8. Iacus, S., La Torre, D.: Approximating distribution functions by iterated function systems. J. Appl. Math. and Decision Sci. 1, 33–46 (2005)

    Google Scholar 

  9. Kunze, H., La Torre, D., Mendivil, F., Vrscay, E.R.: Fractal-Based Methods in Analysis. Springer, New York (2012)

    Google Scholar 

  10. Kunze, H., La Torre, D., Vrscay, E.R.: Collage-based inverse problems for IFSM with entropy maximation and sparsity constraints. Image Anal. Stereol. 32(3), 183–188 (2013)

    Article  Google Scholar 

  11. La Torre, D., Vrscay, E.R., Ebrahimi, M., Barnsley, M.: Measure-valued images, associated fractal transforms and the affine self-similarity of images. SIAM J. Imaging Sci. 2(2), 470–507 (2009)

    Google Scholar 

  12. La Torre, D., Mendivil, F., Vrscay, E.R.: Iterated function systems on functions of bounded variations. Fractals 24(2), 1650019 (2016)

    Article  MathSciNet  Google Scholar 

  13. Li, M., Han, C., Wang, R., Guo, T.: Shrinking gradient descent algorithms for total variation regularized image denoising. Comput. Optim. Appl. 68(3), 643–660 (2017)

    Article  MathSciNet  Google Scholar 

  14. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based oise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  15. Rudin, W.: Real and Complex Analysis. McGraw Hill, New York (1974)

    Google Scholar 

  16. Strong, D., Chan, T.: Edge-preserving and scale-dependent properties of total variation regularization. Inverse Prob. 19, 165–187 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Natural Sciences and Engineering Research Council of Canada (NSERC) in the form of a Discovery Grant (HK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herb Kunze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kunze, H., La Torre, D. (2018). Inverse Problems and Total Variation Minimization for Iterated Function Systems on Maps. In: Kilgour, D., Kunze, H., Makarov, R., Melnik, R., Wang, X. (eds) Recent Advances in Mathematical and Statistical Methods . AMMCS 2017. Springer Proceedings in Mathematics & Statistics, vol 259. Springer, Cham. https://doi.org/10.1007/978-3-319-99719-3_9

Download citation

Publish with us

Policies and ethics