Skip to main content

Coupled Axial, In Plane and Out of Plane Bending Vibrations of Cable Harnessed Space Structures

  • Conference paper
  • First Online:
Recent Advances in Mathematical and Statistical Methods (AMMCS 2017)

Abstract

A distributed parameter model is presented to study the effect of a cable harness on the vibration characteristics of space structures. A cable is attached at an offset distance along the beam. Positioning the cable at an offset position induces coupling between various coordinates of motion such as the in plane bending, out of plane bending and the axial modes. The system is modeled using energy methods and the governing coupled partial differential equations of the cable harnessed beam are developed using the Extended Hamilton’s principle. The natural frequencies obtained from the coupled and decoupled partial differential equations are compared to the natural frequencies obtained from the Finite Element Analysis formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coombs, D.M., Goodding, J.C., Babuska, V., Ardelean, E.V., Robertson, L.M., Lane, S.A.: Dynamic modeling and experimental validation of a cable-loaded panel. J. Spacecraft Rockets 48, 958–973 (2011)

    Article  Google Scholar 

  2. Goodding, J.C., Ardelean, E.V., Babuška, V., Robertson III, L.M., Lane, S.A.: Experimental techniques and structural parameter estimation studies of spacecraft cables. J. Spacecraft Rockets 48, 942–957 (2011)

    Article  Google Scholar 

  3. Goodding, J.C., Babuška, V., Griffith, D.T., Ingram, B.R., Robertson, L.: Study of free-free beam structural dynamics perturbations due to mounted cable harnesses. In: Proceedings of the 48th aiaa/asme/asch/ahs/asc sdm conference, honolulu, hi (2007)

    Google Scholar 

  4. Choi, J., Inman, D.J.: Spectrally formulated modeling of a cable-harnessed structure. J. Sound Vib. 333, 3286–3304 (2014)

    Article  Google Scholar 

  5. Spak, K., Agnes, G., Inman, D.: Parameters for modeling stranded cables as structural beams. Exp. Mech. 54, 1613–1626 (2014)

    Article  Google Scholar 

  6. Martin, B., Salehian, A.: Dynamic modelling of cable-harnessed beam structures with periodic wrapping patterns: a homogenization approach. Int. J. Modell. Simul. 33, 185–202 (2013)

    Google Scholar 

  7. Martin, B., Salehian, A.: Mass and stiffness effects of harnessing cables on structural dynamics: continuum modeling. AIAA J. (2016)

    Google Scholar 

  8. Martin, B., Salehian, A.: Homogenization modeling of periodically wrapped string-harnessed beam structures: experimental validation. AIAA J. (2016)

    Google Scholar 

  9. Rao, S.S.: Vibration of Continuous Systems. Wiley (2007)

    Google Scholar 

  10. Salehian, A., Cliff, E.M., Inman, D.J.: Continuum modeling of an innovative space-based radar antenna truss. J. Aerospace Eng. 19, 227–240 (2006)

    Article  Google Scholar 

  11. Salehian, A., Inman, D.J.: Dynamic analysis of a lattice structure by homogenization: experimental validation. J. Sound Vib. 316, 180–197 (2008)

    Article  Google Scholar 

  12. Salehian, A., Seigler, T.M., Inman, D.J.: Dynamic effects of a radar panel mounted on a truss satellite. AIAA J. 45 (2007)

    Google Scholar 

  13. Salehian, A., Inman, D.: Micropolar continuous modeling and frequency response validation of a lattice structure. J. Vib. Acoust. 132, 011010 (2010)

    Article  Google Scholar 

  14. Salehian, A., Inman, D.J., Cliff, E.M.: Natural frequency validation of a homogenized model of a truss. In: Proceedings of the xxiv-international modal analysis conference (2006)

    Google Scholar 

  15. Salehian, A., Chen, Y.: On strain-rate dependence of kinetic energy in homogenization approach: theory and experiment. AIAA J. 50, 2029–2033 (2012)

    Article  Google Scholar 

  16. Salehian, A., Inman, D.J.: Thermally induced oscillations of an inflatable space structure with a repeated element pattern. Int. J. Acoust. Vib. 16, 3 (2011)

    Google Scholar 

  17. Stoykov, S., Ribeiro, P.: Nonlinear forced vibrations and static deformations of 3d beams with rectangular cross section: the influence of warping, shear deformation and longitudinal displacements. Int. J. Mechanical Sci. 52, 1505–1521 (2010)

    Article  Google Scholar 

  18. Stoykov, S., Ribeiro, P.: Vibration analysis of rotating 3d beams by the pversion finite element method. Finite Elem. Anal. Des. 65, 76–88 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthik Yerrapragada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yerrapragada, K., Salehian, A. (2018). Coupled Axial, In Plane and Out of Plane Bending Vibrations of Cable Harnessed Space Structures. In: Kilgour, D., Kunze, H., Makarov, R., Melnik, R., Wang, X. (eds) Recent Advances in Mathematical and Statistical Methods . AMMCS 2017. Springer Proceedings in Mathematics & Statistics, vol 259. Springer, Cham. https://doi.org/10.1007/978-3-319-99719-3_23

Download citation

Publish with us

Policies and ethics