Skip to main content

Reuse Method for Quantum Circuit Synthesis

  • Conference paper
  • First Online:
Recent Advances in Mathematical and Statistical Methods (AMMCS 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 259))

Abstract

The algebraic decomposition of a unitary operator is a key operation in the synthesis of quantum circuits. If most methods factorize the matrix into products, there exists a method that allows to reuse already existing optimized circuits to implement linear combinations of them. This paper presents an attempt to extend this method to a general framework of circuit synthesis. The method needs to find suitable groups for the implementation of new quantum circuits. We identify key points necessary for the construction of a comprehensive method and we test potential group candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Simulating quantum computation on a conventional computer is known to be expensive [10] since a linear increase in the number of manipulated qubits yields an exponential increase in the size of the required memory.

References

  1. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457 (1995)

    Article  Google Scholar 

  2. Bullock, S.S., Markov, I.L.: Asymptotically optimal circuits for arbitrary n-qubit diagonal computations. Quant. Inf. Comput. 4(1), 27–47 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Chi-Chih Yao, A.: Quantum circuit complexity. In: Proceedings of the 34th Annual Symposium on Foundations of Computer Science (SFCS’93), pp. 352–361. IEEE Computer Society, Washington, DC, USA (1993)

    Google Scholar 

  4. De Vos, A., De Baerdemacker, S.: Block-ZXZ synthesis of an arbitrary quantum circuit. Phys. Rev. A 94(5), 052317 (2016)

    Article  Google Scholar 

  5. Deutsch, D., Barenco, A., Ekert, A.: Universality in quantum computation. Proc. R. Soc. Lond. A 449, 669–677 (1995)

    Article  MathSciNet  Google Scholar 

  6. JavadiAbhari, A., Patil, S., Kudrow, D., Heckey, J., Lvov, A., Chong, F.T., Martonosi, M.: ScaffCC: Scalable compilation and analysis of quantum programs. Parallel Comput. 45, 2–17 (2015)

    Article  Google Scholar 

  7. Klappenecker, A., Rötteler, M.: Quantum software reusability. Int. J. Found. Comput. Sci. 14(05), 777–796 (2003)

    Article  MathSciNet  Google Scholar 

  8. Knill, E.: Approximation by quantum circuits. Technical Report LANL report LAUR-95-2225, Los Alamos National Laboratory (1995)

    Google Scholar 

  9. Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum circuit simplification and level compaction. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 27(3), 436–444 (2008)

    Google Scholar 

  10. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  11. Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73(1), 58 (1994)

    Article  Google Scholar 

  12. Saeedi, M., Arabzadeh, M., Zamani, M.S., Sedighi, M.: Block-based quantum-logic synthesis. Quant. Inf. Comput. 11(3), 262–277 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum-logic circuits. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 25(6), 1000–1010 (2006)

    Google Scholar 

  14. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793 (1996)

    Article  MathSciNet  Google Scholar 

  15. Valiron, B., Ross, N.J., Selinger, P., Alexander, D.S., Smith, J.M.: Programming the quantum future. Commun. ACM 58(8), 52–61 (2015)

    Article  Google Scholar 

  16. Vartiainen, J.J., Möttönen, M., Salomaa, M.M.: Efficient decomposition of quantum gates. Phys. Rev. Lett. 92(17), 177,902 (2004)

    Google Scholar 

  17. Wecker, D., Svore, K.M.: LIQUi\(\vert \rangle \): A software design architecture and domain-specific language for quantum computing (2014). ArXiv:1402.4467

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Goubault de Brugière .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Allouche, C., Baboulin, M., Goubault de Brugière, T., Valiron, B. (2018). Reuse Method for Quantum Circuit Synthesis. In: Kilgour, D., Kunze, H., Makarov, R., Melnik, R., Wang, X. (eds) Recent Advances in Mathematical and Statistical Methods . AMMCS 2017. Springer Proceedings in Mathematics & Statistics, vol 259. Springer, Cham. https://doi.org/10.1007/978-3-319-99719-3_1

Download citation

Publish with us

Policies and ethics