Skip to main content

The Logistic Map: An AI Tool for Economists Investigating Complexity and Suggesting Policy Decisions

  • Conference paper
  • First Online:
Decision Economics. Designs, Models, and Techniques for Boundedly Rational Decisions (DCAI 2018)

Abstract

The present contribution contains an original interpretation of the logistic map popularized by the biologist Robert May in 1976. This map is potentially a powerful AI tool based on a deterministic methodology having a double possibility to be applied in economics. The first application is to investigate the intrinsic complexity of real economic phenomena characterized by endogenous non-linear dynamics. The second application is to determine results, typical of a normative science, useful for suggesting policy decisions aimed to avoid chaos and unpredictability in the real economic system. In the first type of application, the logistic map can be used as an AI tool of forecasting (for previsions of bifurcations, cycles and chaos). In the second, the logistic map can be considered as an AI tool for policy makers in order to deduce the analytical conditions that ensure the economic system to be sufficiently far away from chaos and uncontrollability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term “catastrophe” refers to a sudden change in a system’s developmental trajectory, or in a variable that characterizes it, caused by small changes in the initial conditions and/or in conditions outside the system.

  2. 2.

    The logistic map is a unimodal polynomial map of degree 2, defined for the closed and limited interval of real numbers [0,1]. It is typically used to study the onset of bifurcations, cycles, and deterministic chaos in situations characterized by simple nonlinear dynamics and by limits on the variable whose temporal evolution is to be analyzed.

References

  1. Alligood, K.T., Sauer, T., Yorke, J.A.: Chaos. An Introduction to Dynamical Systems. Springer, New York (1996)

    Book  MATH  Google Scholar 

  2. Andrecut, M.: Logistic map as a random number generator. Int. J. Mod. Phys. B 12(9), 921–930 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barkley Rosser, J.: From Catastrophe to Chaos: A General Theory of Economic Discontinuities. Springer, New York (2000)

    Book  MATH  Google Scholar 

  4. Baumol, W.J., Benhabib, J.: Chaos: significance, mechanism, and economic applications. J. Econ. Perspect. 3(1), 77–105 (1981)

    Article  Google Scholar 

  5. Benhabib, J.: On cycles and chaos in economics. Stud. Nonlinear Dyn. Econom. 1(1), 1–4 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Benhabib, J., Day, R.H.: Rational choice and erratic behaviour. Rev. Econ. Stud. 48(3), 459–471 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bullard, J., Butler, A.: Nonlinearity and chaos in economic models: implications for policy decisions. Econ. J. 103(419), 849–867 (1993)

    Article  Google Scholar 

  8. Day, R.H.: Irregular growth cycles. Am. Econ. Rev. 72(3), 406–414 (1982)

    Google Scholar 

  9. Day, R.H.: The emergence of chaos from classical economic growth. Q. J. Econ. 98(2), 201–213 (1983)

    Article  MathSciNet  Google Scholar 

  10. Day, R.H.: Complex economic dynamics: obvious in history, generic in theory, elusive in data. J. Appl. Econom. 7(Suppl.), 9–23 (1992). Special Issue on Nonlinear Dynamics and Econometrics

    Article  Google Scholar 

  11. Emmert-Streib, F., Behmer, M.: Optimization procedure for predicting non-linear time series based on a non-Gaussian noise model. In: Gelbukh, A., Fernando, A. (eds.) MICAI 2007: Advances in Artificial Intelligence. Springer, Heidelberg (2007)

    Google Scholar 

  12. Faggini, M., Parziale, A.: The failure of economic theory. Lessons from chaos theory. Mod. Econ. 3, 1–10 (2012)

    Article  Google Scholar 

  13. Farmer, R.: Deficits and cycles. J. Econ. Theory 40(1), 77–88 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fidanova, S., Roeva, O., Mucherino, A., Kapanova, C.: InterCriteria analysis of ant algorithm with environment change for GPS surveying problem. In: Dichev, C., Agre, G. (eds.) Artificial Intelligence: Methodology, Systems, and Applications: AIMSA 2016 Proceedings. Springer, Cham (2016)

    Chapter  Google Scholar 

  15. Grandmont, J.M.: On endogenous competitive business cycles. Econometrica 53(5), 995–1045 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grandmont, J.M.: Stabilizing competitive business cycle. J. Econ. Theory 40(1), 57–76 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grandmont, J.M.: Nonlinear difference equations, bifurcations and chaos: an introduction. Res. Econ. 62, 122–177 (2008)

    Article  Google Scholar 

  18. Holyst, J.A.: How to control a chaotic economy. J. Evol. Econ. 6(1), 31–42 (1996)

    Article  Google Scholar 

  19. Holyst, J.A., Urbanowicz, K.: Chaos control in economical model by time delayed feedback method. Physica A 287(3–4), 587–598 (2000)

    Article  Google Scholar 

  20. Kaas, L.: Stabilizing Chaos in a Dynamic Macroeconomic Model. J. Econ. Behav. Organ. 33(3–4), 313–332 (1998)

    Article  Google Scholar 

  21. Koda, M.: Chaos search in fourier amplitude sensitivity test. J. Inf. Commun. Technol. 11, 1–16 (2012)

    Article  Google Scholar 

  22. Kopel, M.: Improving the performance of an economic system: controlling chaos. J. Evol. Econ. 7(3), 269–289 (1997)

    Article  MathSciNet  Google Scholar 

  23. May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)

    Article  MATH  Google Scholar 

  24. Medio, A.: Teoria Non-Lineare del Ciclo Economico. Il Mulino, Bologna (1979)

    Google Scholar 

  25. Nishimura, K., Sorger, G.: Optimal Cycles and Chaos: A Survey. Stud. Nonlinear Dyn. Econom. 1(1), 11–28 (1996)

    MathSciNet  MATH  Google Scholar 

  26. Persohn, K.J., Povinelli, R.J.: Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation. Chaos Solitons Fractals 45(3), 238–245 (2012)

    Article  Google Scholar 

  27. Thom, R.: Stabilité Structurelle et Morphogénèse. W.A. Benjamin Inc., Massachusetts (1972). English Edition: Structural Stability and Morphogenesis. Westwiew Press, Reading, Massachusetts (1975)

    Google Scholar 

  28. Tzouveli, P.K., Ntalianis, K.S., Kollias, S.D.: Chaotic encryption driven watermarking of human video objects based on Hu moments. In: Maglogiannis, I., Karpuozis, K., Bramer, M. (eds.) Artificial Intelligence Applications and Innovations. AIAI 2006 Proceedings. Springer, Boston (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Pagliari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pagliari, C., Mattoscio, N. (2019). The Logistic Map: An AI Tool for Economists Investigating Complexity and Suggesting Policy Decisions. In: Bucciarelli, E., Chen, SH., Corchado, J. (eds) Decision Economics. Designs, Models, and Techniques for Boundedly Rational Decisions. DCAI 2018. Advances in Intelligent Systems and Computing, vol 805. Springer, Cham. https://doi.org/10.1007/978-3-319-99698-1_3

Download citation

Publish with us

Policies and ethics