Skip to main content

On the Fibonacci Universality Classes in Nonlinear Fluctuating Hydrodynamics

  • Conference paper
  • First Online:
From Particle Systems to Partial Differential Equations (PSPDE 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 258))

Included in the following conference series:

Abstract

We present a lattice gas model that without fine tuning of parameters is expected to exhibit the so far elusive modified Kardar–Parisi–Zhang (KPZ) universality class. To this end, we review briefly how non-linear fluctuating hydrodynamics in one dimension predicts that all dynamical universality classes in its range of applicability belong to an infinite discrete family which we call Fibonacci family since their dynamical exponents are the Kepler ratios \(z_i = F_{i+1}/F_{i}\) of neighbouring Fibonacci numbers \(F_i\), including diffusion (\(z_2=2\)), KPZ (\(z_3=3/2\)), and the limiting ratio which is the golden mean \(z_\infty =(1+\sqrt{5})/2\). Then we revisit the case of two conservation laws to which the modified KPZ model belongs. We also derive criteria on the macroscopic currents to lead to other non-KPZ universality classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If some collective velocities are equal then the crucial assumption of spatial separation of the normal modes at large times breaks down. The predictions of NLFH for this case have not been studied yet in great detail.

  2. 2.

    When the time t is irrelevant we drop the dependence on t.

  3. 3.

    It seems to have gone unnoticed that, quite remarkably, this symmetry relates a purely static property of the invariant measure (the covariances \(K_{\alpha \beta }\)) with the microscopic dynamics which give rise to the currents \(\bar{j}^\alpha \). This restricts severely the possible microscopic dynamics for which a given measure can be invariant.

  4. 4.

    We stress that for more than one conservation law this expectation is mathematically very difficult to prove. Not only is on macroscopic level existence and uniqueness of global solutions in time a major open problem in pde theory, but also the derivation of the hydrodynamic limit after the occurrence shocks, which is a generic property of hyperbolic systems of conservation laws, is largely an open problem, with some results only for the Leroux system [9].

  5. 5.

    The product measure (23) remains invariant also for different interaction strength \(\alpha _1\ne \alpha _2\) which leaves the currents unchanged. However, equal interaction asymmetry is required.

References

  1. Bernardin, C., Gonçalves, P.: Anomalous fluctuations for a perturbed Hamiltonian system with exponential interactions. Commun. Math. Phys. 325, 291–332 (2014)

    Article  MathSciNet  Google Scholar 

  2. Bernardin, C., Gonçalves, P., Jara, M.: 3/4-fractional superdiffusion in a system of harmonic oscillators perturbed by a conservative noise. Arch. Ration. Mech. Anal. 220, 505–542 (2016)

    Article  MathSciNet  Google Scholar 

  3. Chakraborty, S., Pal, S., Chatterjee, S., Barma, M.: Large compact clusters and fast dynamics in coupled nonequilibrium systems. Phys. Rev. E 93, 050102(R) (2016)

    Article  Google Scholar 

  4. Colaiori, F., Moore, M.A.: Numerical solution of the mode-coupling equations for the Kardar-Parisi-Zhang equation in one dimension. Phys. Rev. E 65, 017105 (2001)

    Article  Google Scholar 

  5. Devillard, P., Spohn, H.: Universality class of interface growth with reflection symmetry. J. Stat. Phys. 66, 1089–1099 (1992)

    Article  MathSciNet  Google Scholar 

  6. Ertaş, D., Kardar, M.: Dynamic relaxation of drifting polymers: a phenomenological approach. Phys. Rev. E 48, 1228–1245 (1993)

    Article  Google Scholar 

  7. Ferrari, P.L., Sasamoto, T., Spohn, H.: Coupled Kardar-Parisi-Zhang equations in one dimension. J. Stat. Phys. 153, 377–399 (2013)

    Article  MathSciNet  Google Scholar 

  8. Frey, E., Täuber, U.C., Hwa, T.: Mode-coupling and renormalization group results for the noisy Burgers equation. Phys. Rev. E 53, 4424–4438 (1996)

    Article  Google Scholar 

  9. Fritz, J., Tóth, B.: Derivation of the Leroux system as the hydrodynamic limit of a two-component lattice gas. Commun. Math. Phys. 249, 1–27 (2004)

    Article  MathSciNet  Google Scholar 

  10. Funaki, T.: Infinitesimal invariance for the coupled KPZ equations. Memoriam Marc Yor-Séminaire de Probabilités XLVII. Lecture Notes in Mathematics, vol. 2137, pp. 37–47. Springer, Switzerland (2015)

    Google Scholar 

  11. Grisi, R., Schütz, G.M.: Current symmetries for particle systems with several conservation laws. J. Stat. Phys. 145, 1499–1512 (2011)

    Article  MathSciNet  Google Scholar 

  12. Halpin-Healy, T., Takeuchi, K.A.: A KPZ Cocktail-Shaken, not Stirred. J. Stat. Phys. 160(4), 794–814 (2015)

    Article  MathSciNet  Google Scholar 

  13. Kafri, Y., Levine, E., Mukamel, D., Schütz, G.M., Willmann, R.D.: Phase-separation transition in one-dimensional driven models. Phys. Rev. E 68, 035101(R) (2003)

    Article  Google Scholar 

  14. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Grundlehren der mathematischen Wissenschaften, vol. 320. Springer, Berlin (1999)

    Book  Google Scholar 

  15. Kundu, A., Dhar, A.: Equilibrium dynamical correlations in the Toda chain and other integrable models. Phys. Rev. E 94, 062130 (2016)

    Article  MathSciNet  Google Scholar 

  16. Lepri, S. (ed.): Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer. Lecture Notes in Physics, vol. 921. Springer, Switzerland (2016)

    Google Scholar 

  17. Popkov, V., Salerno, M.: Hydrodynamic limit of multichain driven diffusive models. Phys. Rev. E 69, 046103 (2004)

    Article  Google Scholar 

  18. Popkov, V., Schmidt, J., Schütz, G.M.: Superdiffusive modes in two-species driven diffusive systems. Phys. Rev. Lett. 112, 200602 (2014)

    Article  Google Scholar 

  19. Popkov, V., Schmidt, J., Schütz, G.M.: Universality classes in two-component driven diffusive systems. J. Stat. Phys. 160, 835–860 (2015)

    Article  MathSciNet  Google Scholar 

  20. Popkov, V., Schadschneider, A., Schmidt, J., Schütz, G.M.: Fibonacci family of dynamical universality classes. Proc. Natl. Acad. Science USA 112(41), 12645–12650 (2015)

    Article  MathSciNet  Google Scholar 

  21. Popkov, V., Schadschneider, A., Schmidt, J., Schütz, G.M.: Exact scaling solution of the mode coupling equations for non-linear fluctuating hydrodynamics in one dimension, J. Stat. Mech. 093211 (2016)

    Google Scholar 

  22. Prähofer, M., Spohn, H.: Exact scaling function for one-dimensional stationary KPZ growth. J. Stat. Phys. 115, 255–279 (2004)

    Article  MathSciNet  Google Scholar 

  23. Ramaswamy, S., Barma, M., Das, D., Basu, A.: Phase diagram of a two-species lattice model with a linear instability. Phase Transit. 75, 363–375 (2002)

    Article  Google Scholar 

  24. Schütz, G.M.: Exactly solvable models for many-body systems far from equilibrium. In: Domb, C., Lebowitz, J. (eds.) Phase Transitions and Critical Phenomena, vol. 19. Academic Press, London (2001)

    Google Scholar 

  25. Schütz, G.M., Wehefritz-Kaufmann, B.: Kardar-Parisi-Zhang modes in d-dimensional directed polymers. Phys. Rev. E 96, 032119 (2017)

    Article  Google Scholar 

  26. Spohn, H.: Nonlinear fluctuating hydrodynamics for anharmonic chains. J. Stat. Phys. 154, 1191–1227 (2014)

    Article  MathSciNet  Google Scholar 

  27. Spohn, H.: The Kardar-Parisi-Zhang equation—a statistical physics perspective. In: Schehr, G., Altland, A., Fyodorov, Y.V., O’Connell, N., Cugliandolo, L.F. (eds.) Les Houches Summer School July 2015 Session CIV "Stochastic Processes and Random Matrices". Oxford University Press, Oxford (2017)

    Google Scholar 

  28. Spohn, H., Stoltz, G.: Nonlinear fluctuating hydrodynamics in one dimension: the case of two conserved fields. J. Stat. Phys. 160, 861–884 (2015)

    Article  MathSciNet  Google Scholar 

  29. Sudbury, A., Lloyd, P.: Quantum operators in classical probability theory: II. The concept of duality in interacting particle systems. Ann. Probab. 23(4), 1816–1830 (1995)

    Article  MathSciNet  Google Scholar 

  30. Tóth, B., Valkó, B.: Onsager relations and Eulerian hydrodynamic limit for systems with several conservation laws. J. Stat. Phys. 112, 497–521 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Schütz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schütz, G.M. (2018). On the Fibonacci Universality Classes in Nonlinear Fluctuating Hydrodynamics. In: Gonçalves, P., Soares, A. (eds) From Particle Systems to Partial Differential Equations . PSPDE 2016. Springer Proceedings in Mathematics & Statistics, vol 258. Springer, Cham. https://doi.org/10.1007/978-3-319-99689-9_2

Download citation

Publish with us

Policies and ethics