Skip to main content

Non-opioid Intravenous Infusions for Management of Cancer-Associated Pain

  • Chapter
  • First Online:
Essentials of Interventional Cancer Pain Management

Abstract

Opioids have long been at the foundation of treating cancer-related pain; however, non-opioid intravenous infusions have become meaningful alternatives and adjuncts. Cancer-associated pain, which results from the disease process or as sequelae of treatment, is often challenging to control and may not respond to standard analgesic regimens. Lidocaine, ketamine, bisphosphonates, as well as various radioisotopes have been utilized as infusions to provide analgesia and decrease reliance on opioids, which have numerous unfavorable side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Finkel JC, Pestieau SR, Quezado ZM. Ketamine as an adjuvant for treatment of cancer pain in children and adolescents. J Pain. 2007;8:515–21.

    Article  CAS  Google Scholar 

  2. Angst MS, Clark JD. Opioid-induced hyperalgesia: a qualitative systematic review. Anesthesiology. 2006;104:570–87.

    Article  CAS  PubMed  Google Scholar 

  3. Drake R, Longworth J, Collins JJ. Opioid rotation in children with cancer. J Palliat Med. 2004;7:419–22.

    Article  PubMed  Google Scholar 

  4. Shinde S, Gordon P, Sharma P, Gross J, Davis MP. Use of non-opioid analgesics as adjuvants to opioid analgesia for cancer pain management in an inpatient palliative unit: does this improve pain control and reduce opioid requirements? Support Care Cancer. 2014;23(3):695–703.

    Article  PubMed  Google Scholar 

  5. Eidelman A, White T, Swarm RA. Interventional therapies for cancer pain management: important adjuvants to systemic analgesics. J Natl Compr Canc Netw. 2007;5:753–60.

    Article  PubMed  Google Scholar 

  6. Reich DL, Silvay G. Ketamine: an update on the first twenty-five years of clinical experience. Can J Anaesth. 1989;36:186–97.

    Article  CAS  PubMed  Google Scholar 

  7. Conway M, White N, Jean CS, Zempsky WT, Steven K. Use of continuous intravenous ketamine for end-stage cancer pain in children. J Pediatr Oncol Nurs. 2009;26:100–6.

    Article  Google Scholar 

  8. Berger JM, Ryan A, Vadivelu N, Merriam P, Rever L, Harrison P. Ketamine-fentanyl-midazolam infusion for the control of symptoms in terminal life care. Am J Hosp Palliat Care. 2000;17:127–34.

    Article  CAS  PubMed  Google Scholar 

  9. Clark JL, Kalan GE. Effective treatment of severe cancer pain of the head using low-dose ketamine in an opioid-tolerant patient. J Pain Symptom Manag. 1995;10:310–4.

    Article  CAS  Google Scholar 

  10. Chung WJ, Pharo GH. Successful use of ketamine infusion in the treatment of intractable cancer pain in an outpatient. J Pain Symptom Manag. 2007;33:2–5.

    Article  Google Scholar 

  11. Romero TR, Galdino GS, Silva GC, et al. Ketamine activates the L-arginine/Nitric oxide/cyclic guanosine monophosphate pathway to induce peripheral antinociception in rats. Anesth Analg. 2011;113:1254–9.

    Article  CAS  PubMed  Google Scholar 

  12. Gupta A, Devi LA, Gomes I. Potentiation of μ-opioid receptor-mediated signaling by ketamine. J Neurochem. 2011;119:294–302.

    Article  CAS  PubMed  Google Scholar 

  13. Arendt-Nielsen L, Mansikka H, Staahl C, et al. A translational study of the effects of ketamine and pregabalin on temporal summation of experimental pain. Reg Anesth Pain Med. 2011;36:585–91.

    Article  CAS  PubMed  Google Scholar 

  14. Hagelberg NM, Peltoniemi MA, Saari TI, et al. Clarithromycin, a potent inhibitor of CYP3A, greatly increases exposure to oral S-ketamine. Eur J Pain. 2010;14:625–9.

    Article  CAS  PubMed  Google Scholar 

  15. Bell RF. Ketamine for chronic non-cancer pain. Pain. 2009;141:210–4.

    Article  CAS  PubMed  Google Scholar 

  16. Bredlau AL, Thakur R, Korones DN, Dworkin RH. Ketamine for pain in adults and children with cancer: a systematic review and synthesis of the literature. Pain Med. 2013;14:1505–17.

    Article  PubMed  Google Scholar 

  17. Hardy J, Quinn S, Fazekas B, et al. Randomized, double-blind, placebo-controlled study to assess the efficacy and toxicity of subcutaneous ketamine in the management of cancer pain. J Clin Oncol. 2012;30:3611–7.

    Article  CAS  PubMed  Google Scholar 

  18. Bell RF, Eccleston C, Kalso E. Ketamine as adjuvant to opioids for cancer pain. A qualitative systematic review. J Pain Symptom Manag. 2003;26:867–75.

    Article  CAS  Google Scholar 

  19. Gilliland HE, Prasad BK, Mirakhur RK, Fee JP. An investigation of the potential morphine sparing effect of midazolam. Anaesthesia. 1996;51:808–11.

    Article  CAS  PubMed  Google Scholar 

  20. Okamoto Y, Tsuneto S, Tanimukai H, et al. Can gradual dose titration of ketamine for management of neuropathic pain prevent psychotomimetic effects in patients with advanced cancer? Am J Hosp Palliat Care. 2013;30:450–4.

    Article  PubMed  Google Scholar 

  21. Noppers I, Niesters M, Aarts L, Smith T, Sarton E, Dahan A. Ketamine for the treatment of chronic non-cancer pain. Expert Opin Pharmacother. 2010;11:2417–29.

    Article  CAS  PubMed  Google Scholar 

  22. Cortiñas-Saenz M, Alonso-Menoyo MB, Errando-Oyonarte CL, Alférez-García I, Carricondo-Martínez MA. Effect of sub-anaesthetic doses of ketamine in the postoperative period in a patient with uncontrolled depression. Rev Esp Anestesiol Reanim. 2013;60:110–3.

    Article  PubMed  Google Scholar 

  23. Larkin GL, Beautrais AL. A preliminary naturalistic study of low-dose ketamine for depression and suicide ideation in the emergency department. Int J Neuropsychopharmacol. 2011;14:1127–31.

    Article  CAS  PubMed  Google Scholar 

  24. Jackson K, Ashby M, Martin P, Pisasale M, Brumley D, Hayes B. “Burst” ketamine for refractory cancer pain: an open-label audit of 39 patients. J Pain Symptom Manag. 2001;22:834–42.

    Article  CAS  Google Scholar 

  25. Massey GV, Pedigo S, Dunn NL, Grossman NJ, Russell EC. Continuous lidocaine infusion for the relief of refractory malignant pain in a terminally ill pediatric cancer patient. J Pediatr Hematol Oncol. 2002;24:566–8.

    Article  Google Scholar 

  26. Nagaro T, Shimizu C, Inoue H, et al. The efficacy of intravenous lidocaine on various types of neuropathic pain. Masui. 1995;44:862–7.

    CAS  PubMed  Google Scholar 

  27. Ferrante FM, Paggioli J, Cherukuri S, Arthur GR. The analgesic response to intravenous lidocaine in the treatment of neuropathic pain. Anesth Analg. 1996;82:91–7.

    CAS  PubMed  Google Scholar 

  28. Kajiume T, Sera Y, Nakanuno R, et al. Continuous intravenous infusion of ketamine and lidocaine as adjuvant analgesics in a 5-year-old patient with neuropathic cancer pain. J Palliat Med. 2012;15:719–22.

    Article  Google Scholar 

  29. Baron R. Mechanisms of disease: neuropathic pain—a clinical perspective. Nat Clin Pract Neurol. 2006;2:95–106.

    Article  PubMed  Google Scholar 

  30. Hollmann MW, Durieux ME. Local anesthetics and the inflammatory response: a new therapeutic indication? Anesthesiology. 2000;93:858–75.

    Article  CAS  PubMed  Google Scholar 

  31. Sharma S, Rajagopal MR, Palat G, Singh C, Haji AG, Jain D. A phase II pilot study to evaluate use of intravenous lidocaine for opioid-refractory pain in cancer patients. J Pain Symptom Manag. 2009;37:85–93.

    Article  CAS  Google Scholar 

  32. Groudine SB, Fisher HA, Kaufman RP, et al. Intravenous lidocaine speeds the return of bowel function, decreases postoperative pain, and shortens hospital stay in patients undergoing radical retropubic prostatectomy. Anesth Analg. 1998;86:235–9.

    CAS  PubMed  Google Scholar 

  33. Rimbäck G, Cassuto J, Tollesson PO. Treatment of postoperative paralytic ileus by intravenous lidocaine infusion. Anesth Analg. 1990;70:414–9.

    Article  PubMed  Google Scholar 

  34. Dirks J, Fabricius P, Petersen KL, Rowbotham MC, Dahl JB. The effect of systemic lidocaine on pain and secondary hyperalgesia associated with the heat/capsaicin sensitization model in healthy volunteers. Anesth Analg. 2000;91:967–72.

    Article  CAS  PubMed  Google Scholar 

  35. Kuo CP, Jao SW, Chen KM, et al. Comparison of the effects of thoracic epidural analgesia and i.v. infusion with lidocaine on cytokine response, postoperative pain and bowel function in patients undergoing colonic surgery. Br J Anaesth. 2006;97:640–6.

    Article  CAS  PubMed  Google Scholar 

  36. McCleane G. Intravenous lidocaine: an outdated or underutilized treatment for pain? J Palliat Med. 2007;10:798–805.

    Article  PubMed  Google Scholar 

  37. Koppert W, Weigand M, Neumann F, et al. Perioperative intravenous lidocaine has preventive effects on postoperative pain and morphine consumption after major abdominal surgery. Anesth Analg. 2004;98:1050–5. table of contents.

    Article  CAS  PubMed  Google Scholar 

  38. Tikuisis R, Miliauskas P, Samalavicius NE, Zurauskas A, Samalavicius R, Zabulis V. Intravenous lidocaine for post-operative pain relief after hand-assisted laparoscopic colon surgery: a randomized, placebo-controlled clinical trial. Tech Coloproctol. 2014;18:373–80.

    Article  CAS  PubMed  Google Scholar 

  39. Kang JG, Kim MH, Kim EH, Lee SH. Intraoperative intravenous lidocaine reduces hospital length of stay following open gastrectomy for stomach cancer in men. J Clin Anesth. 2012;24:465–70.

    Article  CAS  PubMed  Google Scholar 

  40. Ferrini R, Paice JA. How to initiate and monitor infusional lidocaine for severe and/or neuropathic pain. J Support Oncol. 2004;2:90–4.

    PubMed  Google Scholar 

  41. Adami S. Bisphosphonates in prostate carcinoma. Cancer. 1997;80:1674–9.

    Article  CAS  PubMed  Google Scholar 

  42. Rubens RD. Bone metastases—the clinical problem. Eur J Cancer. 1998;34:210–3.

    Article  CAS  PubMed  Google Scholar 

  43. Addeo R, Nocera V, Faiola V, et al. Management of pain in elderly patients receiving infusion of zoledronic acid for bone metastasis: a single-institution report. Support Care Cancer. 2008;16:209–14.

    Article  PubMed  Google Scholar 

  44. Green JR, Müller K, Jaeggi KA. Preclinical pharmacology of CGP 42′446, a new, potent, heterocyclic bisphosphonate compound. J Bone Miner Res. 1994;9:745–51.

    Article  CAS  PubMed  Google Scholar 

  45. Berenson JR, Rosen L, Vescio R, et al. Pharmacokinetics of pamidronate disodium in patients with cancer with normal or impaired renal function. J Clin Pharmacol. 1997;37:285–90.

    Article  CAS  PubMed  Google Scholar 

  46. Green JR, Seltenmeyer Y, Jaeggi KA, Widler L. Renal tolerability profile of novel, potent bisphosphonates in two short-term rat models. Pharmacol Toxicol. 1997;80:225–30.

    Article  CAS  PubMed  Google Scholar 

  47. Berenson JR, Vescio RA, Rosen LS, et al. A phase I dose-ranging trial of monthly infusions of zoledronic acid for the treatment of osteolytic bone metastases. Clin Cancer Res. 2001;7:478–85.

    CAS  PubMed  Google Scholar 

  48. Body JJ. Breast cancer: bisphosphonate therapy for metastatic bone disease. Clin Cancer Res. 2006;12:6258s–63s.

    Article  CAS  PubMed  Google Scholar 

  49. Van Poznak CH, Temin S, Yee GC, et al. American Society of Clinical Oncology executive summary of the clinical practice guideline update on the role of bone-modifying agents in metastatic breast cancer. J Clin Oncol. 2011;29:1221–7.

    Article  PubMed  CAS  Google Scholar 

  50. Pecherstorfer M. Managing neoplastic bone disease with ibandronic acid: a preclinical and clinical data update. Expert Opin Pharmacother. 2008;9:3111–9.

    Article  CAS  PubMed  Google Scholar 

  51. Body JJ, Mancini I. Bisphosphonates for cancer patients: why, how, and when? Support Care Cancer. 2002;10:399–407.

    Article  CAS  PubMed  Google Scholar 

  52. Cameron D. Patient management issues in metastatic bone disease. Semin Oncol. 2004;31:79–82.

    Article  PubMed  Google Scholar 

  53. Guay DR. Ibandronate, an experimental intravenous bisphosphonate for osteoporosis, bone metastases, and hypercalcemia of malignancy. Pharmacotherapy. 2006;26:655–73.

    Article  CAS  PubMed  Google Scholar 

  54. Hillner BE, Ingle JN, Chlebowski RT, et al. American Society of Clinical Oncology 2003 update on the role of bisphosphonates and bone health issues in women with breast cancer. J Clin Oncol. 2003;21:4042–57.

    Article  CAS  PubMed  Google Scholar 

  55. Tanvetyanon T, Stiff PJ. Management of the adverse effects associated with intravenous bisphosphonates. Ann Oncol. 2006;17:897–907.

    Article  CAS  PubMed  Google Scholar 

  56. Migliorati CA, Schubert MM, Peterson DE, Seneda LM. Bisphosphonate-associated osteonecrosis of mandibular and maxillary bone: an emerging oral complication of supportive cancer therapy. Cancer. 2005;104:83–93.

    Article  CAS  PubMed  Google Scholar 

  57. Body JJ. Effectiveness and cost of bisphosphonate therapy in tumor bone disease. Cancer. 2003;97:859–65.

    Article  PubMed  Google Scholar 

  58. Cartenì G, Bordonaro R, Giotta F, et al. Efficacy and safety of zoledronic acid in patients with breast cancer metastatic to bone: a multicenter clinical trial. Oncologist. 2006;11:841–8.

    Article  PubMed  Google Scholar 

  59. Drudge-Coates L. Improving management of patients with advanced cancer. Patient Prefer Adher. 2010;4:415–24.

    Article  Google Scholar 

  60. Ripamonti C, Fagnoni E, Campa T, et al. Decreases in pain at rest and movement-related pain during zoledronic acid treatment in patients with bone metastases due to breast or prostate cancer: a pilot study. Support Care Cancer. 2007;15:1177–84.

    Article  PubMed  Google Scholar 

  61. Wardley A, Davidson N, Barrett-Lee P, et al. Zoledronic acid significantly improves pain scores and quality of life in breast cancer patients with bone metastases: a randomised, crossover study of community vs hospital bisphosphonate administration. Br J Cancer. 2005;92:1869–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bauss F, Russell RG. Ibandronate in osteoporosis: preclinical data and rationale for intermittent dosing. Osteoporos Int. 2004;15:423–33.

    Article  CAS  PubMed  Google Scholar 

  63. Berenson JR, Lichtenstein A, Porter L, et al. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N Engl J Med. 1996;334:488–93.

    Article  CAS  PubMed  Google Scholar 

  64. Coleman RE. Efficacy of zoledronic acid and pamidronate in breast cancer patients: a comparative analysis of randomized phase III trials. Am J Clin Oncol. 2002;25:S25–31.

    Article  PubMed  Google Scholar 

  65. Mancini I, Dumon JC, Body JJ. Efficacy and safety of ibandronate in the treatment of opioid-resistant bone pain associated with metastatic bone disease: a pilot study. J Clin Oncol. 2004;22:3587–92.

    Article  CAS  PubMed  Google Scholar 

  66. Body JJ, Bartl R, Burckhardt P, et al. Current use of bisphosphonates in oncology. International Bone and Cancer Study Group. J Clin Oncol. 1998;16:3890–9.

    Article  CAS  PubMed  Google Scholar 

  67. Lipton A, Theriault RL, Hortobagyi GN, et al. Pamidronate prevents skeletal complications and is effective palliative treatment in women with breast carcinoma and osteolytic bone metastases: long term follow-up of two randomized, placebo-controlled trials. Cancer. 2000;88:1082–90.

    Article  CAS  PubMed  Google Scholar 

  68. Rosen LS, Gordon D, Tchekmedyian NS, et al. Long-term efficacy and safety of zoledronic acid in the treatment of skeletal metastases in patients with nonsmall cell lung carcinoma and other solid tumors: a randomized, Phase III, double-blind, placebo-controlled trial. Cancer. 2004;100:2613–21.

    Article  CAS  PubMed  Google Scholar 

  69. Italiano A, Ciais C, Chamorey E, et al. Home infusions of biphosphonate in cancer patients: a prospective study. J Chemother. 2006;18:217–20.

    Article  CAS  PubMed  Google Scholar 

  70. Baumrucker S. Palliation of painful bone metastases: Strontium-89. Am J Hosp Palliat Care. 1998;15:113–5.

    Article  CAS  PubMed  Google Scholar 

  71. Mertens WC, Stitt L, Porter AT. Strontium 89 therapy and relief of pain in patients with prostatic carcinoma metastatic to bone: a dose response relationship? Am J Clin Oncol. 1993;16:238–42.

    Article  CAS  PubMed  Google Scholar 

  72. Mertens WC, Porter AT, Reid RH, Powe JE. Strontium-89 and low-dose infusion cisplatin for patients with hormone refractory prostate carcinoma metastatic to bone: a preliminary report. J Nucl Med. 1992;33:1437–43.

    CAS  PubMed  Google Scholar 

  73. Zenda S, Nakagami Y, Toshima M, et al. Strontium-89 (Sr-89) chloride in the treatment of various cancer patients with multiple bone metastases. Int J Clin Oncol. 2013;19(4):739–43.

    Article  PubMed  CAS  Google Scholar 

  74. Taylor AJ. Strontium-89 for the palliation of bone pain due to metastatic disease. J Nucl Med. 1994;35:2054.

    PubMed  Google Scholar 

  75. Hansen DV, Holmes ER, Catton G, Thorne DA, Chadwick DH, Schmutz DA. Strontium-89 therapy for painful osseous metastatic prostate and breast cancer. Am Fam Physician. 1993;47:1795–800.

    CAS  PubMed  Google Scholar 

  76. Second-line treatment of metastatic prostate cancer. Prednisone and radiotherapy for symptom relief. Prescrire Int. 2013;22:74–8.

    Google Scholar 

  77. Baczyk M, Baczyk E, Sowiński J. Preliminary results of combined application of radioisotopes and biphosphonates in the management of pain associated with osteoblastic-osteolytic bone metastases of breast cancer. Ortop Traumatol Rehabil. 2003;5:234–7.

    PubMed  Google Scholar 

  78. Pirayesh E, Amoui M, Mirzaee HR, et al. Phase 2 study of a high dose of 186Re-HEDP for bone pain palliation in patients with widespread skeletal metastases. J Nucl Med Technol. 2013;41:192–6.

    Article  PubMed  Google Scholar 

  79. Serafini AN. Samarium Sm-153 lexidronam for the palliation of bone pain associated with metastases. Cancer. 2000;88:2934–9.

    Article  CAS  PubMed  Google Scholar 

  80. Henriksen G, Fisher DR, Roeske JC, Bruland Ø, Larsen RH. Targeting of osseous sites with alpha-emitting 223Ra: comparison with the beta-emitter 89Sr in mice. J Nucl Med. 2003;44:252–9.

    CAS  PubMed  Google Scholar 

  81. Radium – 223 (Xofigo) for prostate cancer. Med Lett Drugs Ther. 2013;55:79–80.

    Google Scholar 

  82. Parker C, Nilsson S, Heinrich D, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–23.

    Article  CAS  PubMed  Google Scholar 

  83. Lange PH, Vessella RL. Mechanisms, hypotheses and questions regarding prostate cancer micrometastases to bone. Cancer Metastasis Rev. 1998;17:331–6.

    Article  CAS  PubMed  Google Scholar 

  84. Takalkar A, Adams S, Subbiah V. Radium-223 dichloride bone-targeted alpha particle therapy for hormone-refractory breast cancer metastatic to bone. Exp Hematol Oncol. 2014;3:23.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kerr C. (223)Ra targets skeletal metastases and spares normal tissue. Lancet Oncol. 2002;3:453.

    Article  PubMed  Google Scholar 

  86. Shirley M, McCormack PL. Radium-223 dichloride: a review of its use in patients with castration-resistant prostate cancer with symptomatic bone metastases. Drugs. 2014;74:579–86.

    Article  CAS  PubMed  Google Scholar 

  87. Pandit-Taskar N, Larson SM, Carrasquillo JA. Bone-seeking radiopharmaceuticals for treatment of osseous metastases, Part 1: α therapy with 223Ra-dichloride. J Nucl Med. 2014;55:268–74.

    Article  CAS  PubMed  Google Scholar 

  88. Den RB, Doyle LA, Knudsen KE. Practical guide to the use of radium 223 dichloride. Can J Urol. 2014;21:70–6.

    PubMed  Google Scholar 

  89. Parker CC, Pascoe S, Chodacki A, et al. A randomized, double-blind, dose-finding, multicenter, phase 2 study of radium chloride (Ra 223) in patients with bone metastases and castration-resistant prostate cancer. Eur Urol. 2013;63:189–97.

    Article  CAS  PubMed  Google Scholar 

  90. Coleman R, Aksnes AK, Naume B, et al. A phase IIa, nonrandomized study of radium-223 dichloride in advanced breast cancer patients with bone-dominant disease. Breast Cancer Res Treat. 2014;145:411–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zustovich F, Fabiani F. Therapeutic opportunities for castration-resistant prostate cancer patients with bone metastases. Crit Rev Oncol Hematol. 2014;91:197–209.

    Article  PubMed  Google Scholar 

  92. Menshawy A, et al. Denosumab versus bisphosphonates in patients with advanced cancers-related bone metastasis: systematic review and meta-analysis of randomized controlled trials. Support Care Cancer. 2018;26(4):1029–38. Epub Feb 1 2018.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khelemsky, Y., Shehabar, M.M. (2019). Non-opioid Intravenous Infusions for Management of Cancer-Associated Pain. In: Gulati, A., Puttanniah, V., Bruel, B., Rosenberg, W., Hung, J. (eds) Essentials of Interventional Cancer Pain Management. Springer, Cham. https://doi.org/10.1007/978-3-319-99684-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99684-4_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99682-0

  • Online ISBN: 978-3-319-99684-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics