Skip to main content

Protein Particulates and Biosimilar Development: Analytical Tools and Therapeutic Implications

  • Chapter
  • First Online:
Book cover Biosimilars

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 34))

Abstract

Particulate content of parenteral products represents one of the major challenges during the development and commercialisation of safe biotherapeutics. Indeed, the presence of particles is one the top 10 reasons for product recalls. The risk of immunogenicity and adverse clinical reactions in patients has resulted in subvisible particles becoming one of the major focus topics for regulatory agencies. The US FDA has issued several guidance documents in the recent past on subvisible particles, immunogenicity, quality and technical aspects of biosimilars. These guidance documents make the characterization of subvisible and submicron particles relevant and important for both novel biotherapeutics and biosimilar therapeutics. Significant advances have been made in analytical technologies, improving the detection, quantification, and characterisation of particles from the nm range up to 100 μm plus. With this improvement in analytical tools, there is an increasing expectation from regulatory agencies for sponsors to provide more robust subvisible particle characterisation along with risk assessment. Understanding the particulate content of biotherapeutics provides a unique challenge in the Biopharmaceutical industry. Although regulatory requirements for biotherapeutics filing, demand compliance with USP <788>, recent instances have demonstrated the serious consequences of performing only limited particle characterization. Characterizing the subvisible and submicron particles in biosimilars is extremely critical from an immunogenicity and safety perspective. In the coming years, characterization of subvisible particles will continue to play a crucial role in biosimilar development and approval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An Z. Therapeutic monoclonal antibodies: from bench to clinic. Hoboken: Wiley; 2011.

    Google Scholar 

  • Antonelli G, etal. Interferon antibodies in patients with infectious diseases. Biotherapy. 1997;10(1):7–14.

    Article  CAS  PubMed  Google Scholar 

  • Bai S, etal. Evaluation of incremental siliconization levels on soluble aggregates, submicron and subvisible particles in a prefilled syringe product. J Pharm Sci. 2016;105(1):50–63.

    Article  CAS  PubMed  Google Scholar 

  • Barandun S, Kistler P, Jeunet F, Isliker H. Intravenous administration of human γ-globulin. Vox Sang. 1962;7(2):157–74.

    Article  CAS  PubMed  Google Scholar 

  • Barnard JG, Babcock K, Carpenter JF. Characterization and quantitation of aggregates and particles in interferon-β products: potential links between product quality attributes and immunogenicity. J Pharm Sci. 2012;102(3):915–28.

    Article  PubMed  CAS  Google Scholar 

  • Bertolotto A, etal. Immunogenicity of interferon beta: differences among products. J Neurol. 2004;251(2):ii15–24.

    PubMed  Google Scholar 

  • Braun A, etal. Protein aggregates seem to play a key role among the parameters influencing the antigenicity of interferon alpha (IFN-α) in normal and transgenic mice. Pharm Res. 1997;14(10):1472–8.

    Article  CAS  PubMed  Google Scholar 

  • Bukofzer S, etal. Industry perspective on the medical risk of visible particles in injectable drug products. PDA J Pharm Sci Technol. 2015;69(1):123–39.

    Article  PubMed  Google Scholar 

  • Cao X, etal. Raman microscopic applications in the biopharmaceutical industry: in situ identification of foreign particulates inside glass containers with aqueous formulated solutions. Appl Spectrosc. 2009;63(7):830–4.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter JF, etal. Overlooking subvisible particles in therapeutic protein products: gaps that may compromise product quality. J Pharm Sci. 2009;98(4):1201–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter JF, etal. Potential inaccurate quantitation and sizing of protein aggregates by size exclusion chromatography: essential need to use orthogonal methods to assure the quality of therapeutic protein products. J Pharm Sci. 2010;99(5):2200–8.

    Article  CAS  PubMed  Google Scholar 

  • Casadevall N, etal. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N Engl J Med. 2002;346(7):469–75.

    Article  CAS  PubMed  Google Scholar 

  • Chaffee S, etal. IgG antibody response to polyethylene glycol-modified adenosine deaminase in patients with adenosine deaminase deficiency. J Clin Invest. 1992;89(5):1643–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie M, etal. The role of protein excipient in driving antibody responses to erythropoietin. J Pharm Sci. 2015;104(12):4041–55.

    Article  CAS  PubMed  Google Scholar 

  • Claman HN. Tolerance to a protein antigen in adult mice and the effect of nonspecific factors. J Immunol. 1963;91(6):833–9.

    CAS  PubMed  Google Scholar 

  • Dresser DW. Specific inhibition of antibody production: II. Paralysis induced in adult mice by small quantities of protein antigen. Immunology. 1962;5(3):378–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis EF, Henney CS. Adverse reactions following administration of human gamma globulin. J Allergy Clin Immunol. 1969;43(1):45–54.

    CAS  Google Scholar 

  • EMA. Guideline on development, production, characterisation and specifications for monoclonal antibodies and related products. EMA, editor. 2008.

    Google Scholar 

  • FDA. US Food and Drug warning letter 320-18-28. 2018. https://www.fda.gov/ICECI/EnforcementActions/WarningLetters/ucm594395.htm. [Cited 23 May 2018].

  • FDA AAC Brief. 12 July 2016 Arthritis Advisory Committee Meeting Briefing Document, ABP 501, a proposed biosimilar to Humira®. 2016. https://www.fda.gov/downloads/advisorycommittees/committeesmeetingmaterials/drugs/arthritisadvisorycommittee/ucm510295.pdf. [Cited 2018 May 23].

  • Filipe V, Hawe A, Jiskoot W. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010;27(5):796–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filipe V, etal. Immunogenicity of different stressed IgG monoclonal antibody formulations in immune tolerant transgenic mice. MAbs. 2012;4(6):740–52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fradkin AH, Carpenter JF, Randolph TW. Immunogenicity of aggregates of recombinant human growth hormone in mouse models. J Pharm Sci. 2009;98(9):3247–64.

    Article  CAS  PubMed  Google Scholar 

  • Fradkin AH, Carpenter JF, Randolph TW. Glass particles as an adjuvant: a model for adverse immunogenicity of therapeutic proteins. J Pharm Sci. 2011;100(11):4953–64.

    Article  CAS  PubMed  Google Scholar 

  • Gamble CN. The role of soluble aggregates in the primary immune response of mice to human gamma globulin. Int Arch Allergy Immunol. 1966;30(5):446–55.

    Article  CAS  Google Scholar 

  • Girard F, Gourmelen M. Clinical experience with somatonorm. Acta Paediatr. 1986;75(s325): 29–32.

    Article  Google Scholar 

  • Grauer A, etal. Neutralizing antibodies against salmon calcitonin. The cause of a treatment failure in Paget’s disease. Deutsche Medizinische Wochenschrift (1946). 1994;119(14):507–10.

    Article  CAS  Google Scholar 

  • Gribben JG, etal. Development of antibodies to unprotected glycosylation sites on recombinant human GM-CSF. Lancet. 1990;335(8687):434–7.

    Article  CAS  PubMed  Google Scholar 

  • Grossberg SE, etal. Frequency and magnitude of interferon β neutralizing antibodies in the evaluation of interferon β immunogenicity in patients with multiple sclerosis. J Interf Cytokine Res. 2011;31(3):337–44.

    Article  CAS  Google Scholar 

  • Haji AM, etal. An albumin-free formulation for Escherichia coli-derived interferon beta-1b with decreased immunogenicity in immune tolerant mice. J Interf Cytokine Res. 2016;36(3): 192–203.

    Article  CAS  Google Scholar 

  • Hermeling S, etal. Development of a transgenic mouse model immune tolerant for human interferon beta. Pharm Res. 2005;22(6):847–51.

    Article  CAS  PubMed  Google Scholar 

  • Jacquemin MG, Saint-Remy JM. Factor VIII immunogenicity. Haemophilia. 1998;4(4):552–7.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Narhi LO. Applying selective biophysical techniques in assessing the comparability of protein therapeutics - case studies. Am Pharm Rev. 2006;9:34–43.

    CAS  Google Scholar 

  • Joubert MK, etal. Classification and characterization of therapeutic antibody aggregates. J Biol Chem. 2011;286(28):25118–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpusas M, etal. The structure of human interferon-β: implications for activity. Cell Mol Life Sci. 1998;54(11):1203–16.

    Article  CAS  PubMed  Google Scholar 

  • Kessler M, Goldsmith D, Schellekens H. Immunogenicity of biopharmaceuticals. Nephrol Dial Transplant. 2006;21(Suppl 5):v9–v12.

    Article  CAS  PubMed  Google Scholar 

  • Kontsek P, Liptáková H, Kontseková E. Immunogenicity of interferon-alpha 2 in therapy: structural and physiological aspects. Acta Virol. 1999;43(1):63–70.

    CAS  PubMed  Google Scholar 

  • Kotarek J, etal. Subvisible particle content, formulation, and dose of an erythropoietin peptide mimetic product are associated with severe adverse postmarketing events. J Pharm Sci. 2016;105(3):1023–7.

    Article  CAS  PubMed  Google Scholar 

  • Kumru OS, etal. Compatibility, physical stability, and characterization of an IgG4 monoclonal antibody after dilution into different intravenous administration bags. J Pharm Sci. 2012;101(10):3636–50.

    Article  CAS  PubMed  Google Scholar 

  • Lebron JA, etal. Nonclinical safety assessment of vaccines and the evaluation of novel adjuvants and delivery systems. In: Vaccine adjuvants and delivery systems. Hoboken: Wiley; 2007. p. 403–20.

    Chapter  Google Scholar 

  • Liu J, etal. Assessing analytical similarity of proposed amgen biosimilar ABP 501 to adalimumab. BioDrugs. 2016;30(4):321–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin F, Oliver AM, Kearney JF. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity. 2001;14(5):617–29.

    Article  CAS  PubMed  Google Scholar 

  • Milner RD. Growth hormone 1985. Br Med J. (Clin Res Ed). 1985;291(6509):1593–4.

    Article  CAS  Google Scholar 

  • Moore WV, Leppert P. Role of aggregated human growth hormone (hGH) in development of antibodies to hGH. J Clin Endocrinol Metab. 1980;51(4):691–7.

    Article  CAS  PubMed  Google Scholar 

  • Neumann TAK, Foote M. Megakaryocyte growth and development factor (MGDF): an Mpl ligand and cytokine that regulates thrombopoiesis. Cytokines Cell Mol Ther. 2000;6(1):47–56.

    Article  CAS  PubMed  Google Scholar 

  • Nobbmann U, etal. Dynamic light scattering as a relative tool for assessing the molecular integrity and stability of monoclonal antibodies. Biotechnol Genet Eng Rev. 2007;24:117–28.

    Article  CAS  PubMed  Google Scholar 

  • Palleroni AV, etal. Interferon immunogenicity: preclinical evaluation of interferon-alpha 2a. J Interf Cytokine Res. 1997;17(Suppl 1):S23–7.

    CAS  Google Scholar 

  • Panchal J, etal. Analyzing subvisible particles in protein drug products: a comparison of dynamic light scattering (DLS) and resonant mass measurement (RMM). AAPS J. 2014;16(3):440–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardeshi NN, etal. Microparticles and nanoparticles delivered in intravenous saline and in an intravenous solution of a therapeutic antibody product. J Pharm Sci. 2017;106(2):511–20.

    Article  CAS  PubMed  Google Scholar 

  • Patten PA, Schellekens H. The immunogenicity of biopharmaceuticals. Lessons learned and consequences for protein drug development. Dev Biol. 2003;112:81–97.

    CAS  Google Scholar 

  • Prümmer O. Treatment-induced antibodies to interleukin-2. Biotherapy. 1997;10(1):15–24.

    Article  PubMed  Google Scholar 

  • Ring J, Stephan W, Brendel W. Anaphylactoid reactions to infusions of plasma protein and human serum albumin. Role of aggregated proteins and of stabilizers added during production. Clin Allergy. 1979;9(1):89–97.

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg AS. Effects of protein aggregates: an immunologic perspective. AAPS J. 2006;8(3): E501–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenschein U, etal. Streptokinase immunogenicity in thrombolytic therapy for acute myocardial infarction. Isr J Med Sci. 1991;27(10):541–5.

    CAS  PubMed  Google Scholar 

  • Saggu M, Liu J, Patel A. Identification of subvisible particles in biopharmaceutical formulations using raman spectroscopy provides insight into polysorbate 20 degradation pathway. Pharm Res. 2015;32(9):2877–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schellekens H. Bioequivalence and the immunogenicity of biopharmaceuticals. Nat Rev Drug Discov. 2002;1:457.

    Article  CAS  PubMed  Google Scholar 

  • Schellekens H. How to predict and prevent the immunogenicity of therapeutic proteins. In: El-Gewely MR, editor. Biotechnology annual review. Amsterdam: Elsevier; 2008. p. 191–202.

    Google Scholar 

  • Schernthaner G. Immunogenicity and allergenic potential of animal and human insulins. Diabetes Care. 1993;16(Suppl 3):155–65.

    Article  PubMed  Google Scholar 

  • Shujun B, etal. Effects of submicron particles on formation of micron-sized particles during long-term storage of an interferon-β-1a solution. J Pharm Sci. 2013;102(2):347–51.

    Article  CAS  Google Scholar 

  • Simler BR, etal. Mechanistic complexity of subvisible particle formation: links to protein aggregation are highly specific. J Pharm Sci. 2012;101(11):4140–54.

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, etal. An industry perspective on the monitoring of subvisible particles as a quality attribute for protein therapeutics. J Pharm Sci. 2010;99(8):3302–21.

    Article  CAS  PubMed  Google Scholar 

  • Strehl R, etal. Discrimination between silicone oil droplets and protein aggregates in biopharmaceuticals: a novel multiparametric image filter for sub-visible particles in microflow imaging analysis. Pharm Res. 2012;29(2):594–602.

    Article  CAS  PubMed  Google Scholar 

  • Underwood LE, Voina SJ, Van Wyk JJ. Restoration of growth by human growth hormone (Roos) in hypopituitary dwarfs immunized by other human growth hormone preparations: clinical and immunological studies. J Clin Endocrinol Metab. 1974;38(2):288–97.

    Article  CAS  PubMed  Google Scholar 

  • US FDA. Guidance for industry: immunogenicity assessment for therapeutic protein products, US FDA, editor. 2014.

    Google Scholar 

  • Vadhan-Raj S. Clinical experience with recombinant human thrombopoietin in chemotherapy-induced thrombocytopenia. Semin Hematol. 2000;37:28–34.

    Article  CAS  PubMed  Google Scholar 

  • Veronese FM, Pasut G. PEGylation, successful approach to drug delivery. Drug Discov Today. 2005;10(21):1451–8.

    Article  CAS  PubMed  Google Scholar 

  • Weinbuch D, etal. Micro-flow imaging and resonant mass measurement (Archimedes) -- complementary methods to quantitatively differentiate protein particles and silicone oil droplets. J Pharm Sci. 2013;102(7):2152–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krueger, A.B., Brown, M.D. (2018). Protein Particulates and Biosimilar Development: Analytical Tools and Therapeutic Implications. In: Gutka, H., Yang, H., Kakar, S. (eds) Biosimilars. AAPS Advances in the Pharmaceutical Sciences Series, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-319-99680-6_15

Download citation

Publish with us

Policies and ethics