Skip to main content

GPU Acceleration of Bubble-Particle Dynamics Simulation

  • Conference paper
  • First Online:
Parallel Computational Technologies (PCT 2018)

Abstract

Clusters containing bubbles and solid particles are used in many fields of industry. For instance, the study of bubble-particle interaction can be useful for surface cleaning in microelectronics and froth flotation in oil distillation.

The present work discusses the joint 3D dynamics of bubbles and solid spherical particles in the presence of an acoustic field in an unbounded ideal incompressible liquid. To solve the problem, we chose the boundary element method (BEM) which requires only the discretization of the boundary of the computational domain. However, the application of the conventional BEM for the direct simulation of large particle-bubble systems is normally limited by memory, computational complexity, and speed. To perform such simulations, we propose a numerical approach based on the GPU acceleration of the BEM code.

The method includes the solution of linear algebraic equations with a dense matrix of special type, using for this the generalized minimal residual method with calculation of the matrix-vector product on graphics processors using CUDA technology. We also discuss the performance of the method and run test computations of bubble-particle clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tomita, Y., Robinson, P.B., Tong, R.P., Blake, J.R.: Growth and collapse of cavitation bubbles near a curved rigid boundary. J. Fluid Mech. 466, 259–283 (2002). https://doi.org/10.1017/S0022112002001209

    Article  MATH  Google Scholar 

  2. Brujan, E.A., Keen, G.S., Vogel, A., Blake, J.R.: The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys. Fluids 14, 85–92 (2002). https://doi.org/10.1063/1.1421102

    Article  MATH  Google Scholar 

  3. Miao, H., Gracewski, S.M.: Response of an ultrasonically excited bubble near a fixed rigid object. Acoust. Res. Lett. Online 6, 144–150 (2005). https://doi.org/10.1121/1.1898344

    Article  Google Scholar 

  4. Gracewski, S.M., Miao, H., Dalecki, D.: Ultrasonic excitation of a bubble near a rigid or deformable sphere: implications for ultrasonically induced hemolysis. J. Acoust. Soc. Am. 117, 1440–1447 (2005). https://doi.org/10.1121/1.1858211

    Article  Google Scholar 

  5. Hay, T.A., Hamilton, M.F., Ilinskii, Yu.A., Zabolotskaya, E.A.: Coupled pulsation and translation of a gas bubble and rigid particle. In: AIP Conference Proceedings, vol. 1022, pp. 209–212 (2008). https://doi.org/10.1063/1.2956188

  6. Derjaguin, B.V., Dukhin, S.S.: Theory of flotation of small and medium-size particles. Trans. Inst. Min. Metall. 70, 221–246 (1961)

    Google Scholar 

  7. Phan, C.M., Nguyen, A.V., Miller, J.D., Evans, G.M., Jameson, G.J.: Investigations of bubble-particle interactions. Int. J. Miner. Process. 72, 239–254 (2003). https://doi.org/10.1016/S0301-7516(03)00102-9

    Article  Google Scholar 

  8. Dai, Z., Fornasiero, D., Ralston, J.: Particle-bubble collision models - a review. Adv. Colloid Interface Sci. 96, 54 (2000). https://doi.org/10.1016/S0001-8686(99)00030-5

    Article  Google Scholar 

  9. Nguyen, A.V., Evans, G.M.: Attachment interaction between air bubbles and particles in froth flotation. Exp. Therm. Fluid Sci. 28, 381–385 (2004). https://doi.org/10.1016/j.expthermflusci.2002.12.001

    Article  Google Scholar 

  10. Verrelli, D.I., Koh, P.T.L., Nguyen, A.V.: Particle-bubble interaction and attachment in flotation. Chem. Eng. Sci. 66, 5910–5921 (2011)

    Article  Google Scholar 

  11. Basarova, P., Machon, V., Hubicka, M., Horn, D.: Collision processes involving a single rising bubble and a larger stationary spherical particle. Int. J. Miner. Process. 94, 58–66 (2010). https://doi.org/10.1016/j.minpro.2009.11.004

    Article  Google Scholar 

  12. Koh, P.T.L., Schwarz, M.P.: CFD modelling of bubble-particle collision rates and efficiencies in a flotation cell. Miner. Eng. 16, 1055–1059 (2003). https://doi.org/10.1016/j.mineng.2003.05.005

    Article  Google Scholar 

  13. Liu, T.Y., Schwarz, M.P.: CFD-based modelling of bubble-particle collision efficiency with mobile bubble surface in a turbulent environment. Int. J. Miner. Process. 90, 45–55 (2009)

    Article  Google Scholar 

  14. Canot, E., Achard, J.-L.: An overview of boundary integral formulations for potential flows in fluid-fluid systems. Arch. Mech. 43, 453–98 (1991)

    MathSciNet  MATH  Google Scholar 

  15. Bui, T.T., Ong, E.T., Khoo, B.C., Klaseboer, E., Hung, K.C.: A fast algorithm for modeling multiple bubbles dynamics. J. Comput. Phys. 216, 430–453 (2006). https://doi.org/10.1016/j.jcp.2005.12.009

    Article  MathSciNet  MATH  Google Scholar 

  16. CUDA C Programming Guide. http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

  17. NVIDIA Programming Guide. http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

  18. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986). https://doi.org/10.1137/0907058

    Article  MathSciNet  MATH  Google Scholar 

  19. Itkulova(Pityuk), Yu.A., Solnyshkina, O.A., Gumerov, N.A.: Toward large scale simulations of emulsion flows in microchannels using fast multipole and graphics processor accelerated boundary element method. In: ASME 2012 International Mechanical Engineering Congress and Exposition, pp. 873–881 (2012). https://doi.org/10.1115/IMECE2012-86238

  20. Abramova, O.A., Pityuk, Yu.A., Gumerov, N.A., Akhatov, I.Sh.: High-performance BEM simulation of 3D emulsion flow. In: Sokolinsky, L., Zymbler, M. (eds.) PCT 2017. CCIS, vol. 753, pp. 317–330. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67035-5_23

  21. Itkulova(Pityuk), Yu.A., Abramova, O.A., Gumerov, N.A., Akhatov I.S.: Simulation of bubble dynamics in three-dimensional potential flows on heterogeneous computing systems using the fast multipole and boundary element methods. Numer. Methods Program. 15, 239–257 (2014). (in Russian)

    Google Scholar 

  22. Zinchenko, A.Z., Rother, M.A., Davis, R.H.: A novel boundary-integral algorithm for viscous interaction of deformable drops. Phys. Fluid. 9(6), 1493–1511 (1997). https://doi.org/10.1063/1.869275

    Article  Google Scholar 

  23. Plesset, M.S., Prosperetti, A.: Bubble dynamics and cavitation. J. Fluid Mech. 9, 145–185 (1977). https://doi.org/10.1146/annurev.fl.09.010177.001045

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilnur A. Zarafutdinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zarafutdinov, I.A., Pityuk, Y.A., Gainetdinov, A.R., Gumerov, N.A., Abramova, O.A., Akhatov, I.S. (2018). GPU Acceleration of Bubble-Particle Dynamics Simulation. In: Sokolinsky, L., Zymbler, M. (eds) Parallel Computational Technologies. PCT 2018. Communications in Computer and Information Science, vol 910. Springer, Cham. https://doi.org/10.1007/978-3-319-99673-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99673-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99672-1

  • Online ISBN: 978-3-319-99673-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics