Skip to main content

Simple Games Versus Weighted Voting Games

  • Conference paper
  • First Online:
Algorithmic Game Theory (SAGT 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11059))

Included in the following conference series:

Abstract

A simple game (Nv) is given by a set N of n players and a partition of \(2^N\) into a set \(\mathcal {L}\) of losing coalitions L with value \(v(L)=0\) that is closed under taking subsets and a set \(\mathcal {W}\) of winning coalitions W with \(v(W)=1\). Simple games with \(\alpha = \min _{p\ge 0}\max _{W\in \mathcal{W},L\in \mathcal{L}} \frac{p(L)}{p(W)}<1\) are exactly the weighted voting games. Freixas and Kurz (IJGT, 2014) conjectured that \(\alpha \le \frac{1}{4}n\) for every simple game (Nv). We confirm this conjecture for two complementary cases, namely when all minimal winning coalitions have size 3 and when no minimal winning coalition has size 3. As a general bound we prove that \(\alpha \le \frac{2}{7}n\) for every simple game (Nv). For complete simple games, Freixas and Kurz conjectured that \(\alpha =O(\sqrt{n})\). We prove this conjecture up to a \(\ln n\) factor. We also prove that for graphic simple games, that is, simple games in which every minimal winning coalition has size 2, computing \(\alpha \) is NP-hard, but polynomial-time solvable if the underlying graph is bipartite. Moreover, we show that for every graphic simple game, deciding if \(\alpha <a\) is polynomial-time solvable for every fixed \(a>0\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For n is odd, the upper bound in Theorem 1 can be slightly strengthened to \(\frac{n^2-1}{4n}\) [18].

References

  1. Pashkovich, K.: On critical threshold value for simple games. arXiv:1806.03170v2, 11 June 2018

  2. Balas, E., Yu, C.S.: On graphs with polynomially solvable maximum-weight clique problem. Networks 19(2), 247–253 (1989)

    Article  MathSciNet  Google Scholar 

  3. Bilbao, J.M., García, J.R.F., Jiménez, N., López, J.J.: Voting power in the European Union enlargement. Eur. J. Oper. Res. 143(1), 181–196 (2002)

    Article  MathSciNet  Google Scholar 

  4. Biro, P., Kern, W., Paulusma, D.: Computing solutions for matching games. Int. J. Game Theory 41, 75–90 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bock, A., Chandrasekaran, K., Könemann, J., Peis, B., Sanitá, L.: Finding small stabilizers for unstable graphs. Math. Program. 154, 173–196 (2015)

    Article  MathSciNet  Google Scholar 

  6. Brandstaett, A., Mosca, R.: Maximum weight independent set in \(l\)claw-free graphs in polynomial time. Discrete Appl. Math. 237, 57–64 (2018)

    Article  MathSciNet  Google Scholar 

  7. Chalkiadakis, G., Elkind, E., Wooldridge, M.: Computational Aspects of Cooperative Game Theory. Morgan and Claypool Publishers (2011)

    Google Scholar 

  8. Deineko, V.G., Woeginger, G.J.: On the dimension of simple monotonic games. Eur. J. Oper. Res. 170(1), 315–318 (2006)

    Article  Google Scholar 

  9. Elkind, E., Chalkiadakis, G., Jennings, N.R.: Coalition structures in weighted voting games, vol. 178, pp. 393–397 (2008)

    Google Scholar 

  10. Elkind, E., Goldberg, L.A., Goldberg, P.W., Wooldridge, M.: On the computational complexity of weighted voting games. Ann. Math. Artif. Intell. 56(2), 109–131 (2009)

    Article  MathSciNet  Google Scholar 

  11. Faigle, U., Kern, W., Fekete, S., Hochstaettler, W.: The nucleon of cooperative games and an algorithm for matching games. Math. Program. 83, 195–211 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Freixas, J., Kurz, S.: On \(\alpha \)-roughly weighted games. Int. J. Game Theory 43(3), 659–692 (2014)

    Article  MathSciNet  Google Scholar 

  13. Freixas, J., Molinero, X., Olsen, M., Serna, M.: On the complexity of problems on simple games. RAIRO Oper. Res. 45(4), 295–314 (2011)

    Article  MathSciNet  Google Scholar 

  14. Freixas, J., Puente, M.A.: Dimension of complete simple games with minimum. Eur. J. Oper. Res. 188(2), 555–568 (2008)

    Article  MathSciNet  Google Scholar 

  15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  16. Gvozdeva, T., Hemaspaandra, L.A., Slinko, A.: Three hierarchies of simple games parameterized by “resource” parameters. Int. J. Game Theory 42(1), 1–17 (2013)

    Article  MathSciNet  Google Scholar 

  17. Hegedüs, T., Megiddo, N.: On the geometric separability of Boolean functions. Discrete Appl. Math. 66(3), 205–218 (1996)

    Article  MathSciNet  Google Scholar 

  18. Hof, F.: Weight distribution in matching games. MSc thesis, University of Twente (2016)

    Google Scholar 

  19. Kern, W., Paulusma, D.: Matching games: the least core and the nucleolus. Math. Oper. Res. 28, 294–308 (2003)

    Article  MathSciNet  Google Scholar 

  20. Koenemann, J., Pashkovich, K., Toth, J.: Computing the nucleolus of weighted cooperative matching games in polynomial time arXiv:1803.03249v2, 9 March 2018

  21. Kurz, S., Molinero, X., Olsen, M.: On the construction of high dimensional simple games. In: Proceedings ECAI 2016, New York, pp. 880–885 (2016)

    Google Scholar 

  22. Lovász, L., Plummer, M.D.: Matching Theory, vol. 367. American Mathematical Society (2009)

    Google Scholar 

  23. Peled, U.N., Simeone, B.: Polynomial-time algorithms for regular set-covering and threshold synthesis. Discrete Appl. Math. 12(1), 57–69 (1985)

    Article  MathSciNet  Google Scholar 

  24. Peters, H.: Game Theory: A Multi-Leveled Approach. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69291-1

    Book  MATH  Google Scholar 

  25. Isbell, J.R.: A class of majority games. Q. J. Math. 7, 183–187 (1956)

    Article  MathSciNet  Google Scholar 

  26. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Comb. Theory, Ser. B 80(2), 346–355 (2000)

    Article  MathSciNet  Google Scholar 

  27. Solymosi, T., Raghavan, T.E.: An algorithm for finding the nucleolus of assignment games. Int. J. Game Theory 23, 119–143 (1994)

    Article  MathSciNet  Google Scholar 

  28. Taylor, A.D., Zwicker, W.S.: Weighted voting, multicameral representation, and power. Games Econ. Behav. 5, 170–181 (1993)

    Article  MathSciNet  Google Scholar 

  29. Taylor, A.D., Zwicker, W.S.: Simple Games: Desirability Relations, Trading, Pseudoweightings. Princeton University Press (1999)

    Google Scholar 

  30. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The second and fourth author thank Péter Biró and Hajo Broersma for fruitful discussions on the topic of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniël Paulusma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hof, F., Kern, W., Kurz, S., Paulusma, D. (2018). Simple Games Versus Weighted Voting Games. In: Deng, X. (eds) Algorithmic Game Theory. SAGT 2018. Lecture Notes in Computer Science(), vol 11059. Springer, Cham. https://doi.org/10.1007/978-3-319-99660-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99660-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99659-2

  • Online ISBN: 978-3-319-99660-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics