Skip to main content

On Revenue-Maximizing Mechanisms Assuming Convex Costs

  • Conference paper
  • First Online:
  • 1027 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11059))

Abstract

We investigate revenue-maximizing mechanisms in settings where bidders’ utility functions are characterized by convex costs. Such costs arise, for instance, in procurement auctions for energy, and when bidders borrow money at non-linear interest rates. We provide a 1 / 16e approximation guarantee for a prior-free randomized mechanism when bidders’ values are drawn from MHR distributions, and their costs are polynomial. Additionally, we propose two heuristics that allocate proportionally, using either bidders’ values or virtual values. Perhaps surprisingly, in the convex cost setting, it is preferable to allocate to multiple relatively high bidders, rather than only to bidders with the highest (virtual) value, as is optimal in the traditional quasi-linear utility setting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A notable exception is [8], who study prior-free auctions for risk-averse agents, which are modelled by a very specific form of capped quasi-linear utilities.

  2. 2.

    Multiplying \(\mathfrak {u_{}}_{i}\) by \(v_{i}\) yields a familiar utility function, that of the forward setting, with utility measured in units of power, rather than money: \(v_{i} \mathfrak {u_{}}_{i} = u_{i} = v_{i} x_{i} - c_{i}(p_{i})\).

  3. 3.

    For example, it is more expensive to convert bitumen into synthetic crude oil than it is to drill and pump conventional crude oil.

  4. 4.

    In the convex cost setting, if we interpret \(v_{}(q_{})\) as a posted cost, rather than a posted price (i.e., payment) then \(R(q_{})\) can be wrongly interpreted as an expected cost function.

References

  1. Alaei, S., Fu, H., Haghpanah, N., Hartline, J.: The simple economics of approximately optimal auctions. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), pp. 628–637. IEEE (2013)

    Google Scholar 

  2. Border, K.C.: Implementation of reduced form auctions: a geometric approach. Econometrica 59(4), 1175–1187 (1991). http://www.jstor.org/stable/2938181

    Article  MathSciNet  Google Scholar 

  3. Bulow, J., Klemperer, P.: Auctions versus negotiations. Am. Econ. Rev. 86(1), 180–194 (1996)

    Google Scholar 

  4. Cai, Y., Daskalakis, C., Weinberg, S.M.: Understanding incentives: mechanism design becomes algorithm design. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), pp. 618–627, October (2013). https://doi.org/10.1109/FOCS.2013.72

  5. Chawla, S., Hartline, J.D., Sivan, B.: Optimal crowdsourcing contests. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 856–868. SIAM (2012)

    Google Scholar 

  6. Dhangwatnotai, P., Roughgarden, T., Yan, Q.: Revenue maximization with a single sample. Games Econ. Behav. 91, 318–333 (2015)

    Article  MathSciNet  Google Scholar 

  7. DiPalantino, D., Vojnovic, M.: Crowdsourcing and all-pay auctions. In: Proceedings of the 10th ACM Conference on Electronic Commerce, pp. 119–128. ACM (2009)

    Google Scholar 

  8. Fu, H., Hartline, J., Hoy, D.: Prior-independent auctions for risk-averse agents. In: Proceedings of the Fourteenth ACM Conference on Electronic Commerce, pp. 471–488. EC ’13, ACM, New York, NY, USA (2013). http://doi.acm.org/10.1145/2482540.2482551

  9. Gossen, H.H.: Entwickelung der gesetze des menschlichen verkehrs, und der daraus fliessenden regeln für menschliche handeln. F. Vieweg (1854)

    Google Scholar 

  10. Greenwald, A., Oyakawa, T., Syrgkanis, V.: Simple vs optimal contests with convex costs. In: Champin, P., Gandon, F.L., Lalmas, M., Ipeirotis, P.G. (eds.) Proceedings of the 2018 World Wide Web Conference on World Wide Web, WWW 2018, Lyon, France, 23–27 April 2018, pp. 1429–1438. ACM (2018). http://doi.acm.org/10.1145/3178876.3186048

  11. Hartline, J.D.: Mechanism design and approximation. Book draft. October (2015)

    Google Scholar 

  12. Hartline, J.D., Roughgarden, T.: Simple versus optimal mechanisms. In: Proceedings of the 10th ACM Conference on Electronic Commerce, pp. 225–234. EC ’09, ACM, New York, NY, USA (2009). http://doi.acm.org/10.1145/1566374.1566407

  13. Maskin, E., Riley, J.: Optimal auctions with risk averse buyers. Econometrica 52(6), 1473–1518 (1984). http://www.jstor.org/stable/1913516

    Article  MathSciNet  Google Scholar 

  14. Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)

    Article  MathSciNet  Google Scholar 

  15. Pai, M.M., Vohra, R.: Optimal auctions with financially constrained buyers. J. Econ. Theory 150, 383–425 (2014). https://doi.org/10.1016/j.jet.2013.09.015. http://www.sciencedirect.com/science/article/pii/S0022053113001701

    Article  MathSciNet  MATH  Google Scholar 

  16. Roughgarden, T., Talgam-cohen, I., Yan, Q.: Robust auctions for revenue via enhanced competition (2016)

    Google Scholar 

  17. Sakurai, Y., Saito, Y., Iwasaki, A., Yokoo, M.: Beyond quasi-linear utility: strategy/false-name-proof multi-unit auction protocols. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, 2008. WI-IAT’08, vol. 2, pp. 417–423. IEEE (2008)

    Google Scholar 

  18. Samuel-Cahn, E.: Comparison of threshold stop rules and maximum for independent nonnegative random variables. Ann. Probab. 12(4), 1213–1216 (1984)

    Article  MathSciNet  Google Scholar 

  19. Singer, Y.: Budget feasible mechanism design. SIGecom Exch. 12(2), 24–31 (2014). http://doi.acm.org/10.1145/2692359.2692366

    Article  Google Scholar 

  20. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J. Financ. 16(1), 8–37 (1961)

    Article  MathSciNet  Google Scholar 

  21. Wilson, R.: Incentive efficiency of double auctions. Econometrica J. Econ. Soc. 53, 1101–1115 (1985)

    Article  MathSciNet  Google Scholar 

  22. Wilson, R.: Game-theoretic approaches to trading processes. In: Advances in Economic Theory: Fifth World Congress, pp. 33–77 (1987)

    Google Scholar 

Download references

Acknowledgments

This research was supported by NSF Grant #1217761 and Microsoft Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiro Oyakawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Greenwald, A., Oyakawa, T., Syrgkanis, V. (2018). On Revenue-Maximizing Mechanisms Assuming Convex Costs. In: Deng, X. (eds) Algorithmic Game Theory. SAGT 2018. Lecture Notes in Computer Science(), vol 11059. Springer, Cham. https://doi.org/10.1007/978-3-319-99660-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99660-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99659-2

  • Online ISBN: 978-3-319-99660-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics