Skip to main content

Phytoremediation of Industrial Wastewater by Hydrophytes

  • Chapter
  • First Online:
Phytoremediation

Abstract

Availability of pure water is becoming scarce with the rapid industrialization and urbanization, and it’s the need of the hour to minimize contamination sources and develop decontamination methods that are least damaging. With the rapid increase in world population, the need to provide clean water for communities in 2050 will be much greater and challenging. Cleaning the environment using classical approaches can cost up to 400 billion US dollars, whereas cleaning heavy metal-contaminated sites within the USA only can cost up to 7.1 billion US dollars, and these conventional techniques seem quite costly; therefore scientists looked for other cost-effective approaches like bioremediation and phytoremediation. These approaches are not only cheaper but also eco-friendly. Removal of heavy metal pollutants from industrial wastewater using plant roots, a method commonly known as rhizofiltration, can save up to millions because of the ability of the plants to remove as much as 60% of their dry weight as toxic metals. Plants have been characterized as hyperaccumulators because of their ability to concentrate more than 1% of toxic metals within their organs, mostly leaves. Plants employ different metal uptake mechanisms and then can metabolize metals using plant reductases, etc. into less toxic forms sometimes releasing them as vapors in the atmosphere. Terrestrial plants are better for cleansing of soil, while aquatic plants can effectively be used for cleaning contaminated water. Macrophytes have been extensively reported as water-cleaning gurus; hydrophytes in constructed wetlands for water cleaning has been used for experimental purposes, and several studies claim their success in open field experiments as well. The chapter overviews the water pollution issue and discusses how plants can be used for phytoremediation by focusing on the strategies that are employed by these hyperaccumulator plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kahil MT, Dinar A, Albiac J (2015) Modeling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions. J Hydrol 522:95–109

    Article  Google Scholar 

  2. Kneese AV (2015) Water pollution: economics aspects and research needs. Routledge, London

    Book  Google Scholar 

  3. Al-Mulali U, Ozturk I (2015) The effect of energy consumption, urbanization, trade openness, industrial output, and the political stability on the environmental degradation in the MENA (Middle East and North African) region. Energy 84:382–389

    Article  Google Scholar 

  4. Martens P (2014) Health and climate change: modelling the impacts of global warming and ozone depletion. Routledge, London

    Book  Google Scholar 

  5. Lu Y, Song S, Wang R, Liu Z, Meng J, Sweetman AJ, Jenkins A, Ferrier RC, Li H, Luo W (2015) Impacts of soil and water pollution on food safety and health risks in China. Environ Int 77:5–15

    Article  CAS  PubMed  Google Scholar 

  6. Seinfeld JH, Pandis SN (2016) Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  7. Stanley MC, Beggs JR, Bassett IE, Burns BR, Dirks KN, Jones DN, Linklater WL, Macinnis-Ng C, Simcock R, Souter-Brown G (2015) Emerging threats in urban ecosystems: a horizon scanning exercise. Front Ecol Environ 13:553–560

    Article  Google Scholar 

  8. Elmqvist T, Zipperer W, Güneralp B (2016) Urbanization, habitat loss, biodiversity decline: solution pathways to break the cycle. In: Seta K, Solecki WD, Griffith CA (eds) Routledge handbook of urbanization and global environmental change. Routledge, London, pp 139–151

    Google Scholar 

  9. Sun G, Michelsen AM, Sheng Z, Fang AF, Shang Y, Zhang H (2015) Featured collection introduction: water for megacities—challenges and solutions. J Am Water Resour Assoc 51:585–588

    Article  Google Scholar 

  10. Cao S, Lv Y, Zheng H, Wang X (2014) Challenges facing China’s unbalanced urbanization strategy. Land Use Policy 39:412–415

    Article  Google Scholar 

  11. McDonnell MJ, MacGregor-Fors I (2016) The ecological future of cities. Science 352:936–938

    Article  CAS  PubMed  Google Scholar 

  12. Tritsch I, Le Tourneau F-M (2016) Population densities and deforestation in the Brazilian Amazon: new insights on the current human settlement patterns. Appl Geogr 76:163–172

    Article  Google Scholar 

  13. Sahu K (2016) Heavy metal pollution of air, water and soil—a review. SGAT Bull 2016:16

    Google Scholar 

  14. Constant K, Nourry C, Seegmuller T (2014) Population growth in polluting industrialization. Resour Energy Econ 36:229–247

    Article  Google Scholar 

  15. Laws EA (2017) Aquatic pollution: an introductory text. John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  16. Varjani SJ, Agarwal AK, Gnansounou E, Gurunathan B (2018) Bioremediation: applications for environmental protection and management. Springer, New York, NY

    Google Scholar 

  17. Iriel A, Lagorio MG, Cirelli AF (2015) Biosorption of arsenic from groundwater using Vallisneria gigantea plants. Kinetics, equilibrium and photophysical considerations. Chemosphere 138:383–389

    Article  CAS  PubMed  Google Scholar 

  18. Sakakibara M, Ohmori Y, Ha NTH, Sano S, Sera K (2011) Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. CLEAN Soil Air Water 39:735–741

    Article  CAS  Google Scholar 

  19. Jenkins SH (2015) Advances in water pollution research: proceedings of the Fourth International Conference Held in Prague 1969. Elsevier, New York City, NY

    Google Scholar 

  20. Förstner U, Wittmann GT (2012) Metal pollution in the aquatic environment. Springer, New York, NY

    Google Scholar 

  21. Rai PK (2009a) Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Environ Sci Technol 39:697–753

    Article  CAS  Google Scholar 

  22. Segerson K (2017) Non-point source pollution in an international context. Reference on Natural Resources and Environmental Policy in the Era of Global Change: Volume 1: Game theory. World Scientific 1:115–137

    Google Scholar 

  23. Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072

    Article  CAS  PubMed  Google Scholar 

  24. Ebrahiem EE, Al-Maghrabi MN, Mobarki AR (2017) Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology. Arab J Chem 10:S1674–S1679

    Article  CAS  Google Scholar 

  25. Tichonovas M, Krugly E, Racys V, Hippler R, Kauneliene V, Stasiulaitiene I, Martuzevicius D (2013) Degradation of various textile dyes as wastewater pollutants under dielectric barrier discharge plasma treatment. Chem Eng J 229:9–19

    Article  CAS  Google Scholar 

  26. Deblonde T, Cossu-Leguille C, Hartemann P (2011) Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health 214:442–448

    Article  CAS  PubMed  Google Scholar 

  27. Wegman RC, Melis PH, Josefsson B (1986) Organic pollutants in water. American Chemical Society, Washington, DC

    Google Scholar 

  28. Comstock MJ Organic pollutants in water, copyright, advances in chemistry series, foreword, about the editors: sampling, analysis, and toxicity testing. ACS Publications, Washington, DC

    Google Scholar 

  29. Potter DW, Pawliszyn J (1994) Rapid determination of polyaromatic hydrocarbons and polychlorinated biphenyls in water using solid-phase microextraction and GC/MS. Environ Sci Technol 28:298–305

    Article  CAS  PubMed  Google Scholar 

  30. Duruibe J, Ogwuegbu M, Egwurugwu J (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2:112–118

    Google Scholar 

  31. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418

    Article  CAS  Google Scholar 

  32. Inoue K (2013) Heavy metal toxicity. J Clin Toxicol 3:2161–0495

    Article  Google Scholar 

  33. Singh N, Kumar D, Sahu AP (2007) Arsenic in the environment: effects on human health and possible prevention. J Environ Biol 28:359

    CAS  PubMed  Google Scholar 

  34. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Patrick L (2002) Mercury toxicity and antioxidants: part I: role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity-mercury toxicity. Toxicol Appl Pharmacol 7:456–471

    Google Scholar 

  36. Patrick L (2003) Toxic metals and antioxidants: part II the role of antioxidants in arsenic and cadmium toxicity. (Toxic metals part II). Altern Med Rev 8:106–129

    PubMed  Google Scholar 

  37. Stohs S, Bagghi D (2005) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 39:1267–1268

    Google Scholar 

  38. Shaw C, Tomljenovic L (2013) Aluminum in the central nervous system (CNS): toxicity in humans and animals, vaccine adjuvants, and autoimmunity. Immunol Res 56:304–316

    Article  CAS  PubMed  Google Scholar 

  39. Grazuleviciene R, Nadisauskiene R, Buinauskiene J, Grazulevicius T (2009) Effects of elevated levels of manganese and iron in drinking water on birth outcomes. Pol J Environ Stud 18:819–825

    CAS  Google Scholar 

  40. Domingo JL (2001) Reproductive and developmental toxicity of natural and depleted uranium: a review. Reprod Toxicol 15:603–609

    Article  CAS  PubMed  Google Scholar 

  41. Kurttio P, Harmoinen A, Saha H, Salonen L, Karpas Z, Komulainen H, Auvinen A (2006) Kidney toxicity of ingested uranium from drinking water. Am J Kidney Dis 47:972–982

    Article  CAS  PubMed  Google Scholar 

  42. Denkhaus E, Salnikow K (2002) Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol 42:35–56

    Article  CAS  PubMed  Google Scholar 

  43. Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163

    Article  CAS  PubMed  Google Scholar 

  44. Mahmood A, Malik RN (2014) Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arab J Chem 7:91–99

    Article  CAS  Google Scholar 

  45. Wongsasuluk P, Chotpantarat S, Siriwong W, Robson M (2014) Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environ Geochem Health 36:169–182

    Article  CAS  PubMed  Google Scholar 

  46. Sheehan MC, Burke TA, Navas-Acien A, Breysse PN, McGready J, Fox MA (2014) Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review. Bull World Health Organ 92:254–269F

    Article  PubMed  PubMed Central  Google Scholar 

  47. Grandjean P, Weihe P, Debes F, Choi AL, Budtz-Jørgensen E (2014) Neurotoxicity from prenatal and postnatal exposure to methylmercury. Neurotoxicol Teratol 43:39–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Matović V, Buha A, Ðukić-Ćosić D, Bulat Z (2015) Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem Toxicol 78:130–140

    Article  PubMed  CAS  Google Scholar 

  49. García-Esquinas E, Pollan M, Tellez-Plaza M, Francesconi KA, Goessler W, Guallar E, Umans JG, Yeh J, Best LG, Navas-Acien A (2014) Cadmium exposure and cancer mortality in a prospective cohort: the strong heart study. Environ Health Perspect 122:363

    PubMed  PubMed Central  Google Scholar 

  50. Tsai T-L, Kuo C-C, Pan W-H, Chung Y-T, Chen C-Y, Wu T-N, Wang S-L (2017) The decline in kidney function with chromium exposure is exacerbated with co-exposure to lead and cadmium. Kidney Int 92(3):710–720

    Article  CAS  PubMed  Google Scholar 

  51. Kundu A, Lim JS, Tae IH, Lim J-a, Joo H, Ha M, Bae O-N, Lee BM, Kim HS (2016) Insights into the impact of lead exposure to children through [1H] NMR-based metabolomics. 환경독성보건학회 심포지엄 및 학술대회 10:280–280

    Google Scholar 

  52. Sharma S, Singh B, Manchanda V (2015) Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ Sci Pollut Res 22:946–962

    Article  CAS  Google Scholar 

  53. Hong-Bo S, Li-Ye C, Cheng-Jiang R, Hua L, Dong-Gang G, Wei-Xiang L (2010) Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils. Crit Rev Biotechnol 30:23–30

    Article  PubMed  CAS  Google Scholar 

  54. van der Ent A, Baker AJ, Reeves RD, Pollard AJ, Schat H (2015) Commentary: toward a more physiologically and evolutionarily relevant definition of metal hyperaccumulation in plants. Front Plant Sci 6:554

    PubMed  PubMed Central  Google Scholar 

  55. Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–8

    Article  CAS  PubMed  Google Scholar 

  56. Annapurna D, Rajkumar M, Prasad M (2016) Potential of Castor bean (Ricinus communis L.) for phytoremediation of metalliferous waste assisted by plant growth-promoting bacteria: possible cogeneration of economic products. Bioremediation and bioeconomy. Elsevier, New York, NY, pp 149–175

    Google Scholar 

  57. Weyens N, Thijs S, Popek R, Witters N, Przybysz A, Espenshade J, Gawronska H, Vangronsveld J, Gawronski SW (2015) The role of plant–microbe interactions and their exploitation for phytoremediation of air pollutants. Int J Mol Sci 16:25576–25604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yongpisanphop J, Babel S, Kruatrachue M, Pokethitiyook P (2017) Hydroponic screening of fast-growing tree species for lead phytoremediation potential. Bull Environ Contam Toxicol 99:518–523

    Article  CAS  PubMed  Google Scholar 

  59. Callery S, Courtney R (2015) Assessing metal transfer to vegetation and grazers on reclaimed pyritic Zn and Pb tailings. Environ Sci Pollut Res 22:19764–19772

    Article  CAS  Google Scholar 

  60. Miretzky P, Saralegui A, Cirelli AF (2004) Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere 57:997–1005

    Article  CAS  PubMed  Google Scholar 

  61. Mishra VK, Shukla R (2016) Aquatic macrophytes for the removal of heavy metals from coal mining effluent. Phytoremediation. Springer, New York, NY, pp 143–156

    Google Scholar 

  62. Rezania S, Taib SM, Din MFM, Dahalan FA, Kamyab H (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater 318:587–599

    Article  CAS  PubMed  Google Scholar 

  63. Sakakibara M (2016) Phytoremediation of toxic elements-polluted water and soils by aquatic macrophyte Eleocharis acicularis. AIP conference proceedings. AIP Publishing, Melville, NY, p 020038

    Google Scholar 

  64. Yamazaki S, Okazaki K, Kurahashi T, Sakakibara M (2017) Phytoremediation of arsenic-and molybdenum-contaminated alkaline wastewater by Eleocharis acicularis in winter in Japan. IOP conference series: earth and environmental science. IOP Publishing, Bristol, p 012018

    Google Scholar 

  65. Nurfitri A, Masayuki S, Koichiro S (2017) Phytoremediation of heavy metal-polluted mine drainage by Eleocharis Acicularis. Environ Sci:13, 131

    Google Scholar 

  66. Das S, Goswami S, Talukdar AD (2014) A study on cadmium phytoremediation potential of water lettuce, Pistia stratiotes L. Bull Environ Contam Toxicol 92:169–174

    Article  CAS  PubMed  Google Scholar 

  67. Chaudhary E, Sharma P (2014) Duckweed plant: a better future option for phytoremediation. Int J Emerg Sci Eng 2:39–41

    Google Scholar 

  68. Dar MI, Khan FA, Rehman F, Masoodi A, Ansari AA, Varshney D, Naushin F, Naikoo MI (2015) Roles of Brassicaceae in phytoremediation of metals and metalloids. Phytoremediation. Springer, New York, NY, pp 201–215

    Google Scholar 

  69. Goolsby EW, Mason CM (2015) Toward a more physiologically and evolutionarily relevant definition of metal hyperaccumulation in plants. Front Plant Sci 6:33

    Article  PubMed  PubMed Central  Google Scholar 

  70. Anjum NA, Umar S, Iqbal M (2014) Assessment of cadmium accumulation, toxicity, and tolerance in Brassicaceae and Fabaceae plants—implications for phytoremediation. Environ Sci Pollut Res 21:10286–10293

    Article  CAS  Google Scholar 

  71. Angelova V, Ivanova R, Todorov J, Ivanov K (2017) Potential of rapeseed (Brassica napus L.) for phytoremediation of soils contaminated with heavy metals. J Environ Prot Ecol 18:468–478

    Google Scholar 

  72. Baker AJ (1981) Accumulators and excluders-strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  73. Dhiman SS, Selvaraj C, Li J, Singh R, Zhao X, Kim D, Kim JY, Kang YC, Lee J-K (2016) Phytoremediation of metal-contaminated soils by the hyperaccumulator canola (Brassica napus L.) and the use of its biomass for ethanol production. Fuel 183:107–114

    Article  CAS  Google Scholar 

  74. Liu H, Yuan M, Tan S, Yang X, Lan Z, Jiang Q, Ye Z, Jing Y (2015) Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Appl Soil Ecol 89:44–49

    Article  Google Scholar 

  75. Wu Q, Leung JY, Huang X, Yao B, Yuan X, Ma J, Guo S (2015b) Evaluation of the ability of black nightshade Solanum nigrum L. for phytoremediation of thallium-contaminated soil. Environ Sci Pollut Res 22:11478–11487

    Article  CAS  Google Scholar 

  76. Hussain S, Akram M, Abbas G, Murtaza B, Shahid M, Shah NS, Bibi I, Niazi NK (2017) Arsenic tolerance and phytoremediation potential of Conocarpus erectus L. and Populus deltoides L. Int J Phytoremediation 19(11):985–991

    Article  CAS  PubMed  Google Scholar 

  77. Chang F-C, Ko C-H, Tsai M-J, Wang Y-N, Chung C-Y (2014) Phytoremediation of heavy metal contaminated soil by Jatropha curcas. Ecotoxicology 23:1969–1978

    Article  CAS  PubMed  Google Scholar 

  78. Marrugo-Negrete J, Durango-Hernández J, Pinedo-Hernández J, Olivero-Verbel J, Díez S (2015) Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere 127:58–63

    Article  CAS  PubMed  Google Scholar 

  79. El-Ramady HR, Abdalla N, Alshaal T, Fári M, Prokisch J, Pilon-Smits EA, Domokos-Szabolcsy É (2015) Selenium phytoremediation by giant reed. Hydrogen production and remediation of carbon and pollutants. Springer, New York, NY, pp 133–198

    Book  Google Scholar 

  80. Trivedi S, Ansari AA (2015) Molecular mechanisms in the phytoremediation of heavy metals from coastal waters. Phytoremediation. Springer, New York, NY, pp 219–231

    Google Scholar 

  81. Lange B, Ent A, Baker AJM, Echevarria G, Mahy G, Malaisse F, Meerts P, Pourret O, Verbruggen N, Faucon MP (2017) Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge. New Phytol 213:537–551

    Article  CAS  PubMed  Google Scholar 

  82. Reeves RD, Baker AJ, Jaffré T, Erskine PD, Echevarria G, Ent A (2017) A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytol 218(2):407–411

    Article  PubMed  Google Scholar 

  83. van der Ent A, Tang Y-T, Sterckeman T, Echevarria G, Morel J-L, Qiu R-L (2017) Nickel hyperaccumulation mechanisms: a review on the current state of knowledge. Plant Soil 423:1–11

    Google Scholar 

  84. Merlot S, de la Torre VSG, Hanikenne M (2018) Physiology and molecular biology of trace element hyperaccumulation. Agromining: farming for metals. Springer, New York, NY, pp 93–116

    Google Scholar 

  85. Marques AP, Rangel AO, Castro PM (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654

    Article  CAS  Google Scholar 

  86. Venegas A, Rigol A, Vidal M (2015) Viability of organic wastes and biochars as amendments for the remediation of heavy metal-contaminated soils. Chemosphere 119:190–198

    Article  CAS  PubMed  Google Scholar 

  87. Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:939161

    Article  Google Scholar 

  88. Thakur S, Singh L, Ab Wahid Z, Siddiqui MF, Atnaw SM, Din MFM (2016) Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ Monit Assess 188:206

    Article  PubMed  Google Scholar 

  89. Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    Article  CAS  Google Scholar 

  90. Danh LT, Truong P, Mammucari R, Foster N (2014) A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata. Int J Phytoremediation 16:429–453

    Article  CAS  PubMed  Google Scholar 

  91. Liu D, Islam E, Ma J, Wang X, Mahmood Q, Jin X, Li T, Yang X, Gupta D (2008) Optimization of chelator-assisted phytoextraction, using EDTA, lead and Sedum alfredii Hance as a model system. Bull Environ Contam Toxicol 81:30–35

    Article  CAS  PubMed  Google Scholar 

  92. Yadav AK, Pathak B, Fulekar M (2015) Rhizofiltration of heavy metals (cadmium, lead and zinc) from fly ash leachates using water hyacinth (Eichhornia Crassipes). Int J Environ 4:179–196

    Article  Google Scholar 

  93. Gaur N, Flora G, Yadav M, Tiwari A (2014) A review with recent advancements on bioremediation-based abolition of heavy metals. Environ Sci Processes Impacts 16:180–193

    Article  CAS  Google Scholar 

  94. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  PubMed  Google Scholar 

  95. Martínez-Alcalá I, Clemente R, Bernal M (2012) Efficiency of a phytoimmobilisation strategy for heavy metal contaminated soils using white lupin. J Geochem Explor 123:95–100

    Article  CAS  Google Scholar 

  96. Houben D, Pircar J, Sonnet P (2012) Heavy metal immobilization by cost-effective amendments in a contaminated soil: effects on metal leaching and phytoavailability. J Geochem Explor 123:87–94

    Article  CAS  Google Scholar 

  97. Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16:722–729

    Article  CAS  Google Scholar 

  98. Bennicelli R, Stępniewska Z, Banach A, Szajnocha K, Ostrowski J (2004) The ability of Azolla caroliniana to remove heavy metals (Hg (II), Cr (III), Cr (VI)) from municipal waste water. Chemosphere 55:141–146

    Article  CAS  PubMed  Google Scholar 

  99. Török A, Gulyás Z, Szalai G, Kocsy G, Majdik C (2015) Phytoremediation capacity of aquatic plants is associated with the degree of phytochelatin polymerization. J Hazard Mater 299:371–378

    Article  PubMed  CAS  Google Scholar 

  100. Wani R, Ganai B, Shah M, Uqab B (2017) Heavy metal uptake potential of aquatic plants through phytoremediation technique—a review. J Bioremed Biodegr 8:2

    Article  CAS  Google Scholar 

  101. Mishra VK, Tripathi B, Kim K-H (2009) Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. J Hazard Mater 172:749–754

    Article  CAS  PubMed  Google Scholar 

  102. Rai PK (2009b) Microcosm investigation on phytoremediation of Cr using Azolla pinnata. Int J Phytoremediation 12:96–104

    Article  CAS  Google Scholar 

  103. Pflugmacher S, Kühn S, Lee S-H, Choi J-W, Baik S, Kwon K-S, Contardo-Jara V (2015) Green liver systems® for water purification: using the phytoremediation potential of aquatic macrophytes for the removal of different cyanobacterial toxins from water. Am J Plant Sci 6:1607

    Article  CAS  Google Scholar 

  104. Kolada A, Pasztaleniec A, Bielczyńska A, Soszka H (2016) Phytoplankton, macrophytes and benthic diatoms in lake classification: consistent, congruent, redundant? Lessons learnt from WFD-compliant monitoring in Poland. Limnol Ecol Manag Inland Waters 59:44–52

    Article  Google Scholar 

  105. Pi N, Ng J, Kelly B (2017) Uptake and elimination kinetics of perfluoroalkyl substances in submerged and free-floating aquatic macrophytes: results of mesocosm experiments with Echinodorus horemanii and Eichhornia crassipes. Water Res 117:167–174

    Article  CAS  PubMed  Google Scholar 

  106. Newete SW, Byrne MJ (2016) The capacity of aquatic macrophytes for phytoremediation and their disposal with specific reference to water hyacinth. Environ Sci Pollut Res 23:10630–10643

    Article  CAS  Google Scholar 

  107. Wang Z, Yao L, Liu G, Liu W (2014) Heavy metals in water, sediments and submerged macrophytes in ponds around the Dianchi Lake, China. Ecotoxicol Environ Saf 107:200–206

    Article  CAS  PubMed  Google Scholar 

  108. Sood A, Uniyal PL, Prasanna R, Ahluwalia AS (2012) Phytoremediation potential of aquatic macrophyte, Azolla. Ambio 41:122–137

    Article  CAS  PubMed  Google Scholar 

  109. Xiaoyong Z, Yayun T, Jubin Z (2015) Adsorption of Cu(2+) and Pb(2+) from aqueous solution with water hyacinth. Technol Water Treat 2:13

    Google Scholar 

  110. Patel S (2012) Threats, management and envisaged utilizations of aquatic weed Eichhornia crassipes: an overview. Rev Environ Sci Biotechnol 11:249–259

    Article  Google Scholar 

  111. Chunkao K, Nimpee C, Duangmal K (2012) The King’s initiatives using water hyacinth to remove heavy metals and plant nutrients from wastewater through Bueng Makkasan in Bangkok, Thailand. Ecol Eng 39:40–52

    Article  Google Scholar 

  112. Gupta P, Roy S, Mahindrakar AB (2012) Treatment of water using water hyacinth, water lettuce and vetiver grass—a review. Resour Environ 2:202–215

    Article  Google Scholar 

  113. Singh D, Tiwari A, Gupta R (2012) Phytoremediation of lead from wastewater using aquatic plants. J Agric Technol 8:1–11

    Google Scholar 

  114. Emerhi E (2011) Physical and combustion properties of briquettes produced from sawdust of three hardwood species and different organic binders. Adv Appl Sci Res 2:236–246

    CAS  Google Scholar 

  115. Demim S, Drouiche N, Aouabed A, Benayad T, Couderchet M, Semsari S (2014) Study of heavy metal removal from heavy metal mixture using the CCD method. J Ind Eng Chem 20:512–520

    Article  CAS  Google Scholar 

  116. Zhang D, Gersberg RM, Ng WJ, Tan SK (2014) Removal of pharmaceuticals and personal care products in aquatic plant-based systems: a review. Environ Pollut 184:620–639

    Article  CAS  PubMed  Google Scholar 

  117. Bokhari SH, Ahmad I, Mahmood-Ul-Hassan M, Mohammad A (2016) Phytoremediation potential of Lemna minor L. for heavy metals. Int J Phytoremediation 18:25–32

    Article  PubMed  CAS  Google Scholar 

  118. Prajapati SK, Meravi N, Singh S (2012) Phytoremediation of Chromium and Cobalt using Pistia stratiotes: a sustainable approach. Proc Int Acad Ecol Environ Sci 2:136

    CAS  Google Scholar 

  119. Rodrigues ACD, do Amaral Sobrinho NMB, dos Santos FS, dos Santos AM, Pereira ACC, Lima ESA (2017) Biosorption of toxic metals by water lettuce (Pistia stratiotes) Biomass. Water Air Soil Pollut 228:156

    Article  CAS  Google Scholar 

  120. Ng YS, Chan DJC (2017) Phytoremediation capabilities of Spirodela polyrhiza, Salvinia molesta and Lemna sp. in synthetic wastewater: a comparative study. Int J Phytoremediation:29053371

    Google Scholar 

  121. Ladislas S, El-Mufleh A, Gérente C, Chazarenc F, Andrès Y, Béchet B (2012) Potential of aquatic macrophytes as bioindicators of heavy metal pollution in urban stormwater runoff. Water Air Soil Pollut 223:877–888

    Article  CAS  Google Scholar 

  122. Xing W, Wu H, Hao B, Huang W, Liu G (2013) Bioaccumulation of heavy metals by submerged macrophytes: looking for hyperaccumulators in eutrophic lakes. Environ Sci Technol 47:4695–4703

    Article  CAS  PubMed  Google Scholar 

  123. Kumari M, Tripathi B (2015) Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater. Ecotoxicol Environ Saf 112:80–86

    Article  CAS  PubMed  Google Scholar 

  124. Kadlec RH, Knight R, Vymazal J, Brix H, Cooper P, Haberl R (2017) Constructed wetlands for pollution control. IWA Publishing, London

    Google Scholar 

  125. Wu H, Zhang J, Ngo HH, Guo W, Hu Z, Liang S, Fan J, Liu H (2015a) A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresour Technol 175:594–601

    Article  CAS  PubMed  Google Scholar 

  126. Vymazal J (2010) Constructed wetlands for wastewater treatment. Water 2:530–549

    Article  CAS  Google Scholar 

  127. de la Varga D, Soto M, Arias CA, van Oirschot D, Kilian R, Pascual A, Álvarez JA (2017) Constructed wetlands for industrial wastewater treatment and removal of nutrients. Technologies for the treatment and recovery of nutrients from industrial wastewater. Inform Sci Ref 2018:202–230

    Google Scholar 

  128. Abou-Elela SI, Golinielli G, Abou-Taleb EM, Hellal MS (2013) Municipal wastewater treatment in horizontal and vertical flows constructed wetlands. Ecol Eng 61:460–468

    Article  Google Scholar 

  129. Pedescoll A, Sidrach-Cardona R, Hijosa-Valsero M, Bécares E (2015) Design parameters affecting metals removal in horizontal constructed wetlands for domestic wastewater treatment. Ecol Eng 80:92–99

    Article  Google Scholar 

  130. Zhu H, Yan B, Xu Y, Guan J, Liu S (2014) Removal of nitrogen and COD in horizontal subsurface flow constructed wetlands under different influent C/N ratios. Ecol Eng 63:58–63

    Article  Google Scholar 

  131. Vymazal J (2011b) Long-term performance of constructed wetlands with horizontal sub-surface flow: ten case studies from the Czech Republic. Ecol Eng 37:54–63

    Article  Google Scholar 

  132. Cheng S, Grosse W, Karrenbrock F, Thoennessen M (2002) Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecol Eng 18:317–325

    Article  Google Scholar 

  133. Vymazal J (2011a) Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia 674:133–156

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, H.N., Faisal, M. (2018). Phytoremediation of Industrial Wastewater by Hydrophytes. In: Ansari, A., Gill, S., Gill, R., R. Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-99651-6_8

Download citation

Publish with us

Policies and ethics