Skip to main content

Phytoremediation of Chromium-Polluted Soil Using Plants in Conjunction with Microbes

  • Chapter
  • First Online:
Phytoremediation
  • 914 Accesses

Abstract

Chromium is a heavy metal that is found naturally in land and water bodies in small quantities, maybe due to the corrosion of rocks and weathering. However it is also an essential compound for humans in minute quantities. So Cr has gained biological and environmental prominence in past decades as its high deposition in Earth’s crust has become a potential threat to the environment and all life forms. Cr exists in many oxidation states and their concentration varies in a particular environment. However, its toxic form is Cr VI that is soluble in water and permeable through biological membranes, and its deposition in the body may lead to serious neurological and physiological damage to the human body and may cause carcinomas. From past decades the researchers are using hyperaccumulator plants to remediate the Cr-polluted environment. The phytoremediation depends upon the Cr species, type of soil, type of plant, and physicochemical properties of soil. Although there is a space for more research, phytoremediation is a hope to clean our environment biologically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gill RA, Ali B, Cui P, Shen E, Farooq MA, Islam F, Ali S, Mao B, Zhou W (2016) Comparative transcriptome profiling of two Brassica napus cultivars under chromium toxicity and its alleviation by reduced glutathione. BMC Genomics 17:885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Buters J, Biedermann T (2017) Chromium(VI) contact dermatitis: getting closer to understanding the underlying mechanisms of toxicity and sensitization! J Investig Dermatol 137(2):274–277

    Article  CAS  PubMed  Google Scholar 

  3. Pirsaheb M, Hossini H, Jabari Y, Sharafi K, Mohamadi S (2016) Evaluation of heavy metals (chromium, nickel and lead) in topsoil of the residential and industrial area of Kermanshah, Iran. IIOAB J 7(2):410–415

    Google Scholar 

  4. Lukina AO, Boutin C, Rowland O, Carpenter DJ (2016) Evaluating trivalent chromium toxicity on wild terrestrial and wetland plants. Chemosphere 162:355–364

    Article  CAS  PubMed  Google Scholar 

  5. Ding H, Wang G, Lou L, Lv J (2016) Physiological responses and tolerance of Hibiscus cannabinus L. exposed to chromium. Ecotoxicol Environ Saf 133:509–518

    Article  CAS  PubMed  Google Scholar 

  6. Verger L, Dargaud O, Chassé M, Trcera N, Rousse G, Cormier L (2017) Synthesis, properties and uses of chromium-based pigments from the Manufacture de Sèvres. J Cult Herit. https://doi.org/10.1016/j.culher.2017.09.012

    Article  Google Scholar 

  7. Mahmoud AM, AbdEl-Twab SM (2017) Caffeic acid phenethyl ester protects the brain against hexavalent chromium toxicity by enhancing endogenous antioxidants and modulating the JAK/STAT signaling pathway. Biomed Pharmacother 91:303–311

    Article  CAS  PubMed  Google Scholar 

  8. Anjum SA, Ashraf U, Khan I, Tanveer M, Shahid M, Shakoor A, Wang LC (2017) Phyto-toxicity of chromium in maize: oxidative damage, osmolyte accumulation. Pedosphere, anti-oxidative defense and chromium uptake 27(2):262–273

    Google Scholar 

  9. Islam F, Yasmeen T, Arif MS, Riaz M, Shahzad SM, Imran Q, Ali I (2016) Combined ability of chromium (Cr) tolerant plant growth-promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiol Biochem 108:456–467

    Article  CAS  PubMed  Google Scholar 

  10. Ahemad M (2015) Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. J Genet Eng Biotechnol 13:51–58

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ahemad M (2014) Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arab J Chem. https://doi.org/10.1016/j.arabjc.2014.11.020

  12. Gomes MA, Hauser-Davis RA, Suzuki MS, VitĂ³ria AP (2017) Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations. Ecotoxicol Environ Saf 140:55–64

    Article  CAS  PubMed  Google Scholar 

  13. Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Khan N, Dumat C, Rashid MI (2017) Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere 178:513–533

    Article  CAS  PubMed  Google Scholar 

  14. Qambrani NA, Hwang JH, EunOh S (2016) Comparison of chromium III and VI toxicities in water using sulfur-oxidizing bacterial bioassays. Chemosphere 160:342–348

    Article  CAS  PubMed  Google Scholar 

  15. Pradhan D, BehariSukla L, Sawyer M, Rahman P (2017) Recent bioreduction of hexavalent chromium in wastewater treatment: a review. J Ind Eng Chem 55:1–20

    Article  CAS  Google Scholar 

  16. Pandey S, Singh NK, Bansal AK, Arutchelvan V, Sarkar S (2015) Alleviation of toxic hexavalent chromium using indigenous aerobic bacteria isolated from contaminated tannery industry sites. Prep Biochem Biotechnol 46:517–523

    Article  CAS  Google Scholar 

  17. Prasad R, Kumar M, Trivedi SP (2017) Antigenotoxic effect of turmeric powder extract curcumin against chromium trioxide induced genotoxicity in fish Channa punctatus. J Entomol Zool Stud 5(1):89–94

    Google Scholar 

  18. Bondy SC (2016) Inflammation, aging, and oxidative stress. In: Bondy SC, Cambell A (eds) Metal toxicity, inflammation and oxidative stress, 1st edn. Springer, Cham

    Chapter  Google Scholar 

  19. Suh M, Thompson CM, Kirman CR, Carakostas MC, Haws LC, Harris MA, Proctor DM (2014) High concentrations of hexavalent chromium in drinking water alter iron homeostasis in F344 rats and B6C3F1 mice. Food Chem Toxicol 65:381–388

    Article  CAS  PubMed  Google Scholar 

  20. Kart A, Koc E, Dalginli KY et al (2016) The therapeutic role of glutathione in oxidative stress and oxidative DNA damage caused by hexavalent chromium. Biol Trace Elem Res 174:387. https://doi.org/10.1007/s12011-016-0733-0

    Article  CAS  PubMed  Google Scholar 

  21. Tian X, Patel K, Ridpath JR, Chen Y, Zhou Y-H, Neo D et al (2016) Homologous recombination and translesion DNA synthesis play critical roles on tolerating DNA damage caused by trace levels of hexavalent chromium. PLoS One 11(12):e0167503. https://doi.org/10.1371/journal.pone.016750

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wakeman TP, Aimin Yang A, Dalal NS, Boohaker RJ, Zeng Q, Ding Q, Xu B (2017) DNA mismatch repair protein Mlh1 is required for tetravalent chromium intermediate-induced DNA damage. Oncotarget 8(48):83975–83985

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hartikainen ES, Hatakka A, Kahkonen MA (2013) Impact of cadmium, chromium, cobalt, lithium and manganese to the growth of fungi and production of enzymes. Expert Opin Environ Biol 2(3). https://doi.org/10.4172/2325-9655.1000109

  24. Rafi S, Shoaib A, Awan ZA, Rizvi NB, Nafisa, Shafiq M (2017) Chromium tolerance, oxidative stress response, morphological characteristics, and FTIR studies of phytopathogenic fungus Sclerotium rolfsii. Folia Microbiol 62(3):207–219

    Article  CAS  Google Scholar 

  25. Luczak MW, Green SE, Zhitkovich A (2016) Different ATM signaling in response to chromium(VI) metabolism via ascorbate and nonascorbate reduction: implications for in vitro models and toxicogenomics. Environ Health Perspect 124(1):61–66. https://doi.org/10.1289/ehp.1409434

    Article  CAS  PubMed  Google Scholar 

  26. Park S, Li C, Zhao H, Darzynkiewicz Z, Xu D (2016) Gene 33/Mig6 inhibits hexavalent chromium-induced DNA damage and cell transformation in human lung epithelial cells. Oncotarget 7(8):8916–8930. https://doi.org/10.18632/oncotarget.6866

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cervantes C, Campos-Garc J, Devars S, Corona FG, Tavera HL, Torres-Guzma JC, Moreno-Sänchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  PubMed  Google Scholar 

  28. Rao MY, Narechania MB (2016) The genotoxic effects of anti-cancer drug gossypol on human lymphocytes and its mitigation by melatonin. Drug Chem Toxicol 39(4). https://doi.org/10.3109/01480545.2015.1039646

    Article  CAS  PubMed  Google Scholar 

  29. Wise JP, Wise SS, Little JE (2002) The cytotoxicity and genotoxicity of particulate and soluble hexavalent chromium in human lung cells. Mutat Res 517:221–229

    Article  CAS  PubMed  Google Scholar 

  30. Wise SS, Holmes AL, Liou L, Adam RM, Wise JP (2016) Hexavalent chromium induces chromosome instability in human urothelial cells. Toxicol Appl Pharmacol 296:54–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Patierno SR, Banh D, Landolph JR (1988) Transformation of C3H/10T1/2 mouse embryo cells by insoluble lead chromate but not soluble calcium chromate: relationship to mutagenesis and internalization of lead chromate particles. Cancer Res 47:3815–3823

    Google Scholar 

  32. Ishikawa Y, Nakagawa K, Satoh Y, Kitagawa T, Sugano H, Hirano T, Tsuchiya E (1994) Characteristics of chromate workers’ cancers, chromium lung deposition and pre-cancerous bronchial lesions: an autopsy study. Br J Cancer 70:160–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Browning CL, Speer RM, Wise JP (2017) Molecular mechanisms of chromium-induced carcinogenesis. In: Mudipalli A, Zelikoff J (eds) Essential and non-essential metals. Humana, Cham

    Google Scholar 

  34. Wise SS, Wise C, Xie H, Guillette LJ, Zhu C, Wise JP Jr, Wise JP Sr (2016) Hexavalent chromium is cytotoxic and genotoxic to American alligator cells. Aquat Toxicol 171:30–36

    Article  CAS  PubMed  Google Scholar 

  35. Kamran M, Eqani S, Katsoyiannis A, Xu R, Bibi S, Benizri E, Chaudhary H (2017) Phytoextraction of chromium (Cr) and influence of Pseudomonas putida on Eruca sativa growth. J Geochem Explor 182:269–274

    Article  CAS  Google Scholar 

  36. LĂ³pez-Luna J, Silva-Silva M, Martinez-Vargas S, Mijangos-Ricardez O, GonzĂ¡lez-ChĂ¡vez M, SolĂ­s-DomĂ­nguez F, Cuevas-DĂ­az M (2016) Magnetite nanoparticle (NP) uptake by wheat plants and its effect on cadmium and chromium toxicological behavior. Sci Total Environ 565:941–950

    Article  PubMed  CAS  Google Scholar 

  37. Sharma P, Kumar A, Bhardwaj R (2016) Plant steroidal hormone epibrassinolide regulate—heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environ Exp Bot 122:1–9

    Article  CAS  Google Scholar 

  38. Farid M, Ali S, Akram NA, Rizwan M, Abbas F, Bukhari S, Saeed R (2017) Phyto-management of Cr-contaminated soils by sunflower hybrids: physiological and biochemical response and metal extractability under Cr stress. Environ Sci Pollut Res 24(20):16845

    Article  CAS  Google Scholar 

  39. Gu CS, Liu LQ, Deng YM, Zhang YX, Wang ZQ, Yuan HY, Huang SZ (2017) De novo characterization of the Iris lactea var. chinensis transcriptome and an analysis of genes under cadmium or lead exposure. Ecotoxicol Environ Saf 144:507–513

    Article  CAS  PubMed  Google Scholar 

  40. Wani RA, Ganai BA, Shah MA, Uqab B (2017) Heavy metal uptake potential of aquatic plants through phytoremediation technique – a review. J Bioremed Biodegr 8:4. https://doi.org/10.4172/2155-6199.1000404

    Article  CAS  Google Scholar 

  41. Souza FB, Lima Brandao H, Hackbarth FV, AAU S, Boaventura RA, SMGU S, Vilar VJ (2016) Marine macro-alga Sargassum cymosum as electron donor for hexavalent chromium reduction to trivalent state in aqueous solutions. Chem Eng J 283:903–910

    Article  CAS  Google Scholar 

  42. Oliveira LM, Gress J, De J, Rathinasabapathi B, Marchi G, Chen Y, Ma LQ (2016) Sulfate and chromate increased each other’s uptake and translocation in As-hyperaccumulator Pteris vittata. Chemosphere 147:36–43

    Article  PubMed  CAS  Google Scholar 

  43. Oliveira LM, Ma LQ, Santos JA, Guilherme LR, Lessl JT (2014) Effects of arsenate, chromate, and sulfate on arsenic and chromium uptake and translocation by arsenic hyperaccumulator Pteris vittata L. Environ Pollut 184:187–192

    Article  PubMed  CAS  Google Scholar 

  44. Ma Q, Cao X, Ma J, Tan X, Xie Y, Xiao H, Wu L (2017) Hexavalent chromium stress enhances the uptake of nitrate but reduces the uptake of ammonium and glycine in pak choi (Brassica chinensis L.). Ecotoxicol Environ Safe 139:384–393

    Article  CAS  Google Scholar 

  45. Sobariu DL, Fertu DIT, Diaconu M, Pavel LV, Hlihor RM, Drăgoi EN, Curteanu S, Lenz M, Corvini PFX, Gavrilescu M (2017) Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. New Biotechnol 39:125–134

    Article  CAS  Google Scholar 

  46. Tiwari KK, Dwivedi S, Singh N, Rai U, Tripathi R (2009) Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients. J Environ Biol 30(3):389–394

    CAS  PubMed  Google Scholar 

  47. Liu J, Duan CQ, Zhang X, Zhu Y, Hu C (2009) Subcellular distribution of chromium in accumulating plant Leersia hexandra Swartz. Plant Soil 322:187–195

    Article  CAS  Google Scholar 

  48. Mahmud JA, Hasanuzzaman M, Nahar K, Rahman A, Hossain MS, Fujita M (2017) Maleic acid assisted improvement of metal chelation and antioxidant metabolism confers chromium tolerance in Brassica juncea L. Ecotoxicol Environ Saf 144:216–226

    Article  PubMed  CAS  Google Scholar 

  49. Dalyan E, YĂ¼zbaşıoÄŸlu E, Keskin BC, Yıldızhan Y, Memon A, Ăœnal M, YĂ¼ksel B (2017) The identification of genes associated with Pb and Cd response mechanism in Brassica juncea L. by using Arabidopsis expression array. Environ Exp Bot 139:105–115

    Article  CAS  Google Scholar 

  50. Tang CF, Song JF, Hu X, Hu X, Zhao Y, Li B, Ou D, Peng L (2017) Exogenous spermidine enhanced Pb tolerance in Salix matsudana by promoting Pb accumulation in roots and spermidine, nitric oxide, and antioxidant system levels in leaves. Ecol Eng 107:41–48

    Article  Google Scholar 

  51. Xiao KQ, Li LG, Ma LP, Zhang SY, Bao P, Zhang T, Zhu YG (2016) Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents. Environ Pollut 211:1–8

    Article  CAS  PubMed  Google Scholar 

  52. Nakashita AM (2016) Combinatorial use of sulfur-responsive regions of sulfate transporters provides a highly sensitive plant-based system for detecting selenate and chromate in the environment. Soil Sci Plant Nutr 62(4):386–391

    Article  CAS  Google Scholar 

  53. Murphy T, Kirkham C, Johnson A, Brauer A, Koszelak-Rosenblum M, Malkowski M (2016) Sulfate-binding protein, CysP, is a candidate vaccine antigen of Moraxella catarrhalis. Vaccine 34:3855–3861

    Article  CAS  PubMed  Google Scholar 

  54. Huda AKM, Haque MA, Zaman R, Swaraz AM, Kabir AH (2017) Silicon ameliorates chromium toxicity through phytochelatin-mediated vacuolar sequestration in the roots of Oryza sativa (L). Int J Phytoremediation 19(3):246–253

    Article  CAS  PubMed  Google Scholar 

  55. Diwan H, Khan I, Ahmad A, Iqbal M (2010) Induction of phytochelatins and antioxidant defence system in Brassica juncea and Vigna radiata in response to chromium treatments. Plant Growth Regul 61:97–107

    Article  CAS  Google Scholar 

  56. Kumari S, Varma A, Tuteja N, Choudhary DK (2016) Bacterial ACC-deaminase: an eco-friendly strategy to cope abiotic stresses for sustainable agriculture. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore

    Google Scholar 

  57. Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25

    Article  CAS  Google Scholar 

  58. Islam MK, Khanam S, Lee SY, Alam I, Huhl MR (2014) The interaction of arsenic (As) and chromium (Cr) influences growth and antioxidant status in tossa jute (‘Corchorus olitorius’). Plant Omics 7:499

    CAS  Google Scholar 

  59. Kovacik J, Babula P, Hedbavny J, Klejdus B (2014) Hexavalent chromium damages chamomile plants by alteration of antioxidants and its uptake is prevented by calcium. J Hazard Mater 273:110–117

    Article  CAS  PubMed  Google Scholar 

  60. Farid M, Ali S, Rizwan M, Ali Q, Abbas F, Bukhari SA, Saeed R, Wu L (2017) Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants. Ecotoxicol Environ Saf 145:90. https://doi.org/10.1016/j.ecoenv.2017.07.016

    Article  CAS  PubMed  Google Scholar 

  61. Ganesh KS, Baskaran L, Rajasekaran S, Sumathi K, Chidambaram A, Sundaramoorthy P (2008) Chromium stress induced alterations in biochemical and enzyme metabolism in aquatic and terrestrial plants. Colloids Surf B Biointerfaces 63(2):159–163

    Article  CAS  PubMed  Google Scholar 

  62. Hua ZJ, Keli Y, ZhongGui Z, WuSheng J, DongHua L (2009) Antioxidant response system and chlorophyll fluorescence in chromium (VI)-treated Zea mays L. seedlings. Acta Biol Cracov Ser Bot 51:23–33

    Google Scholar 

  63. Adrees M, Ali S, Iqbal M, Bharwana SA, Siddiqi Z, Farid M, Ali Q, Saeed R, Rizwan M (2015) Mannitol alleviates chromium toxicity in wheat plants in relation to growth, yield, stimulation of anti-oxidative enzymes, oxidative stress and Cr uptake in sand and soil media. Ecotoxicol Environ Saf 122:1–8

    Article  CAS  PubMed  Google Scholar 

  64. Shahid M, Dumat C, Khalid S, Niazi NK, Antunes PMC (2017) Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. Rev Environ Contam Toxicol 241:73–137

    CAS  PubMed  Google Scholar 

  65. Wu Z, McGrouther K, Chen D, Wu W, Wang H (2013) Subcellular distribution of metals within Brassica chinensis L. in response to elevated lead and chromium stress. J Agric Food Chem 61:4715–4722

    Article  CAS  PubMed  Google Scholar 

  66. Khasheii B, Anvari S, Jamalli A (2016) Frequency evaluation of genes encoding siderophores and the effects of different concentrations of Fe ions on growth rate of uropathogenic Escherichia coli. Iran J Microbiol 8(6):359–365

    PubMed  PubMed Central  Google Scholar 

  67. Kong Z, Glick BR (2017) The role of plant growth-promoting bacteria in metal phytoremediation. Adv Microbl Physiol 71:97–132

    Article  Google Scholar 

  68. Chen Y, Yang W, Chao Y, Wang S, Tang YT, Qiu RL (2017) Metal-tolerant Enterobacter sp. strain EG16 enhanced phytoremediation using Hibiscus cannabinus via siderophore-mediated plant growth promotion under metal contamination. Plant Soil 413:203–216

    Article  CAS  Google Scholar 

  69. Chen X, Liu X, Zhang X, Cao L, Hu XX (2017) Phytoremediation effect of Scirpus triqueter inoculated plant-growth-promoting bacteria (PGPB) on different fractions of pyrene and Ni in co-contaminated soils. J Hazard Mater 325:319–326

    Article  CAS  PubMed  Google Scholar 

  70. Liu X, Fu JW, Silva ED, Shi XX, Cao Y, Bapathi BR, Chen Y, Ma LQ (2017) Microbial siderophores and root exudates enhanced goethite dissolution and Fe/As uptake by As-hyperaccumulator Pteris vittata. Environ Pollut 223:230–237

    Article  CAS  PubMed  Google Scholar 

  71. Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. J Hazard Mater 320:36–44

    Article  CAS  PubMed  Google Scholar 

  72. Wang B, Wang Q, Liu W, Liu X, Hou J, Teng Y, Luo Y, Christie P (2017) Biosurfactant-producing microorganism Pseudomonas sp. SB assists the phytoremediation of DDT-contaminated soil by two grass species. Chemosphere 182:137–142

    Article  CAS  PubMed  Google Scholar 

  73. Huang G, Guo G, Yao S, Zhang N, Hu H (2016) Organic acids, amino acids compositions in the root exudates and Cu-accumulation in castor (Ricinus communis L.) under Cu stress. Int J Phytoremediation 18(1):33–40

    Article  PubMed  CAS  Google Scholar 

  74. Soni SK, Singh R, Singh M, Awasthi A, Wasnik K, Kalra A (2014) Pretreatment of Cr(VI)-amended soil with chromate-reducing rhizobacteria decreases plant toxicity and increases the yield of Pisum sativum. Environ Contam Toxicol 66:616–627

    Article  CAS  Google Scholar 

  75. Trivedi P, Pandey A, Sa T (2007) Chromate reducing and plant growth promoting activities of psychrotrophic Rhodococcus erythropolis MtCC 7905. Basic Microbiol 47:513–517

    Article  CAS  Google Scholar 

  76. Soni SK, Singh R, Awasthi A, Kalra A (2014) A Cr(VI)-reducing Microbacterium sp. strain SUCR140 enhances growth and yield of Zea mays in Cr(VI) amended soil through reduced chromium toxicity and improves colonization of arbuscular mycorrhizal fungi. Int Environ Sci Pollut Res Int 21(3):1971–1979

    Article  CAS  PubMed  Google Scholar 

  77. Rosariastuti R, Prijambada ID, Ngadiman N, Prawidyarini GS, Putri AR (2013) Isolation and identification of plant growth promoting and chromium uptake enhancing bacteria from soil contaminated by leather tanning industrial waste. J Basic Appl Sci 9:243–251

    Google Scholar 

  78. Faisal M (2013) Inoculation of plant growth promoting bacteria Ochrobactrum intermedium, Brevibacterium sp. and Bacillus cereus induce plant growth parameters. J Appl Biotechnol 1:45–53

    Article  Google Scholar 

  79. Faisal M, Hasnain S (2006) Plant growth promotion by Brevibacterium under chromium stress. Res J Bot 1(1):24–29

    Article  CAS  Google Scholar 

  80. Faisal M, Hasnain S (2006) Growth stimulatory effect of Ochrobactrum intermedium and Bacillus cereus on Vigna radiata. Lett Appl Microbiol 43:461–466

    Article  CAS  PubMed  Google Scholar 

  81. Faisal M, Hasnain S (2005) Bacterial Cr(VI) reduction concurrently improves sunflower (Helianthus annuus L.) growth. Biotechnol Lett 27(13):943–947

    Article  CAS  PubMed  Google Scholar 

  82. Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48:3262–3267

    Article  CAS  PubMed  Google Scholar 

  83. Wani PA, Khan MS, Zaidi A (2008) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30:159–163

    Article  CAS  PubMed  Google Scholar 

  84. Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J Microbiol Biotechnol 10:1829–1836

    Article  CAS  Google Scholar 

  85. Braud A, Jezequel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286

    Article  PubMed  CAS  Google Scholar 

  86. Wales DS, Sagar BF (1990) Recovery of metal ions by microfungal filters. J Chem Technol Biotechnol 49:345–355

    Article  CAS  PubMed  Google Scholar 

  87. Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    Article  CAS  PubMed  Google Scholar 

  88. Pillichshammer M, Pumpel T, Poder R, Eller K, Klima J, Schinner F (1995) Biosorption of chromium to fungi. Biometals 8:117–121

    Article  CAS  Google Scholar 

  89. Asheh S, Duvnjak Z (1995) Adsorption of copper and chromium by Aspergillus carbonarius. Biotechnol Prog 11:638–642

    Article  Google Scholar 

  90. Rapoport AI, Muter OA (1995) Biosorption of hexavalent chromium by yeast. Process Biochem 30:145–149

    Article  CAS  Google Scholar 

  91. Loubna E, Hafidi M, Silvestre J, Kallerhoff J, Merlina G, Pinelli E (2015) Efficiency of co-composting process to remove genotoxicity from sewage sludge contaminated with hexavalent chromium. Ecol Eng 82:355–360

    Article  Google Scholar 

  92. GĂ³mez SR, Naranjoa EM, Buenoa IV, Feldmanb SR (2011) Accumulation and tolerance characteristics of chromium in a cordgrass Cr-hyperaccumulator, Spartina argentinensis. J Hazard Mater 185(2–3):862–869

    Google Scholar 

  93. BuendĂ­a-GonzĂ¡lez L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera-DĂ­az CE, Vernon-Carte EJ (2010) Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour Technol 101(15):5862–5867

    Article  PubMed  CAS  Google Scholar 

  94. Ghafoori M, Majid N, Islam M, Luhat S (2011) Bioaccumulation of heavy metals by Dyera costulata cultivated in sewage sludge contaminated soil. Afr J Biotechnology 10(52):10674–10682

    Article  Google Scholar 

  95. Mellem JJ (2009) Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites. J Environ Sci Health A Tox Hazard Subst Environ Eng 44(6):568–575

    Article  CAS  Google Scholar 

  96. Gardea-Torresdeyab JL, Peralta-Videaa JR, Montesb M, Rosaa G, Corral-Diaz B (2004) Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements. Bioresour Technol 92(3):229–235

    Article  CAS  PubMed  Google Scholar 

  97. Daud M K, Mei L, Azizullah A, Dawood M, Ali I, Mahmood Q, Ullah W (2016) Leaf-based physiological, metabolic, and ultrastructural changes in cultivated cotton cultivars under cadmium stress mediated by glutathione. Environ Sci Pollut Res 23(15):15551–15564

    Article  CAS  PubMed  Google Scholar 

  98. Jie Liu J, Duan C, Zhang X, Zhu Y, LuX (2011) Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil. J Hazard Mater 188(1–3):85–91

    Article  CAS  PubMed  Google Scholar 

  99. Sampanpanish P, Pongsapich W, Khaodhiar S, Khan E (2006) Chromium Removal from Soil by Phytoremediation with Weed Plant Species in Thailand. Water Air Soil Pollut 6(1-2):191–206

    Article  CAS  Google Scholar 

  100. Khan N, Mishra A, Chauhan PS, Sharma YK, Nautiyal CS (2012) Paenibacillus lentimorbus enhances growth of chickpea (Cicer arietinum L.) in chromium-amended soil. Antonie van Leeuwenhoek 101(2):453–459

    Article  PubMed  CAS  Google Scholar 

  101. Sabir M, Waraich EA, Hakeem KR, Ozturk M, Ahmed HR, Shahid M (2015) Phytoremediation: Mechanism and adaptation. In: Khalid RH, Sabir M, Ozturk M, Murmet M (eds) Soil remediation and plants. Elsevier Academic Press, pp 85–105

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siddiqa, A., Faisal, M. (2018). Phytoremediation of Chromium-Polluted Soil Using Plants in Conjunction with Microbes. In: Ansari, A., Gill, S., Gill, R., R. Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-99651-6_10

Download citation

Publish with us

Policies and ethics