Skip to main content

The New Approach for Dynamic Optimization with Variability Constraints

  • Chapter
  • First Online:
Recent Advances in Computational Optimization

Part of the book series: Studies in Computational Intelligence ((SCI,volume 795))

Abstract

In this work a new optimization approach for processes modeled by differential-algebraic equations with variability constraints was presented. The designed procedure was based on the modified direct shooting method, which can transform the dynamic optimization problem into a large-scale nonlinear optimization task (NLP). The first-order KKT optimality conditions with complementarity constraints were obtained. Finally, to solve the optimality conditions with the complementarity constraints, the solution procedure combining SQP algorithm with the filter approach as a globalization procedure was designed. The efficiency of the presented methodology was tested on a production process in chemical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Augspurger, M., Choi, K.K., Udaykumar, H.S.: Optimizing fin design for a PCM-based thermal storage device using dynamic Kriging. Int. J. Heat Mass Transf. 121, 290–308 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.143

    Article  Google Scholar 

  2. Babaei N., Salamci M.U.: Controller design for personalized drugadministration in cancer therapy: successive approximation approach. Optimal Control Appl. Methods 138 (2017). https://doi.org/10.1002/oca.2372

    Article  MathSciNet  Google Scholar 

  3. Baumrucker, B.T., Biegler, L.T.: MPEC strategies for cost optimization of pipeline operations. Comput. Chem. Eng. 34(6), 900–913 (2010). https://doi.org/10.1016/j.compchemeng.2009.07.012

    Article  Google Scholar 

  4. Biegler L.T.: Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes. Society for Industrial and Applied Mathematics, Philadelphia (2010). https://doi.org/10.1137/1.9780898719383

  5. Biegler L.T.: Advanced optimization strategies for integrated dynamic process operations. Comput. Chem. Eng. (2017) (in press). https://doi.org/10.1016/j.compchemeng.2017.10.016

    Article  Google Scholar 

  6. Biegler L.T., Campbell S.L, Mehrmann V.: Control and Optimization with Differential-Algebraic Constraints. Society for Industrial and Applied Mathematics, Philadelphia (2012). https://doi.org/10.1137/9781611972252.fm

  7. Bloss, K.F., Biegler, L.T., Schiesser, W.E.: Dynamic process optimization through adjoint formulations and constraint aggregation. Ind. Eng. Chem. Res. 38(2), 421–432 (1999). https://doi.org/10.1021/ie9804733

    Article  Google Scholar 

  8. Cao, Y., Li, S., Petzold, L., Serban, R.: Adjoint sensitivity analysis for differential-algebraic equations: The adjoint DAE system and its numerical solution. SIAM J. Sci. Comput. 24(3), 1076–1089 (2003). https://doi.org/10.1137/S1064827501380630

    Article  Google Scholar 

  9. Dowling, A.W., Balwani, C., Gao, Q., Biegler, L.T.: Optimization of sub-ambient separation systems with embedded cubic equation of state thermodynamic models and complementarity constraints. Comput. Chem. Eng. 81, 323–343 (2015). https://doi.org/10.1016/j.compchemeng.2015.04.038

    Article  Google Scholar 

  10. Dra̧g, P.: Algorytmy sterowania wielostadialnymi procesami deskryptorowymi. Akademicka Oficyna Wydawnicza EXIT, Warsaw (2016)

    Google Scholar 

  11. Dra̧g P., Styczeń K.: A general optimization-based approach for thermal processes modeling. In: Proceedings of the 2017 Federated Conference on Computer Science and Information Systems: September 3–6, 2017, pp. 1347–1352. Prague, Czech Republic (2017). https://doi.org/10.15439/2017F458

  12. Dra̧g P., Styczeń K.: A new optimization-based approach for aircraft landing in the presence of windshear. In: Communication Papers of the 2017 Federated Conference on Computer Science and Information Systems: September 3–6, 2017, pp. 83–88. Prague, Czech Republic (2017). https://doi.org/10.15439/2017F436

  13. Dra̧g P., Styczeń K.: Process Control with the Variability Constraints. In: Fidanova S. (ed.) Recent Advances in Computational Optimization. Studies in Computational Intelligence, vol. 717, pp. 41–51. Springer (2018). https://doi.org/10.1007/978-3-319-59861-1_3

    Google Scholar 

  14. Dra̧g P., Styczeń K.: The variability constraints in simulation of index-2 differential-algebraic processes. In: Nivitzka, V., Korecko, S., Szakal, A. (eds.) INFORMATICS 2017: 2017 IEEE 14th International Scientific Conference on Informatics, November 14–16, 2017, Proceedings, pp. 80–86. Poprad, Slovakia (2017)

    Google Scholar 

  15. Dra̧g P., Styczeń K., Kwiatkowska M., Szczurek, A.: A review on the direct and indirect methods for solving optimal control problems with differential-algebraic constraints. In: Recent Advances in Computational Optimization, vol. 2016, pp. 91–105. Springer (2016). https://doi.org/10.1007/978-3-319-21133-6_6

    Google Scholar 

  16. Echebest, N., Schuverdt, M.L., Vignau, R.P.: An inexact restoration derivative-free filter method for nonlinear programming. Comput. Appl. Math. 36, 693–718 (2017). https://doi.org/10.1007/s40314-015-0253-0

    Article  MathSciNet  Google Scholar 

  17. Ferreira, P.S., Karas, E.W., Sachine, M., Sobral, F.N.C.: Global convergence of a derivative-free inexact restoration filter algorithm for nonlinear programming. Optimization 66, 271–292 (2017). https://doi.org/10.1080/02331934.2016.1263629

    Article  MathSciNet  Google Scholar 

  18. Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Program. Ser. B 91, 239–269 (2002). https://doi.org/10.1007/s101070100244

    Article  MathSciNet  Google Scholar 

  19. Jamaludin, M.Z., Li, H., Swartz, C.L.E.: The utilization of closed-loop prediction for dynamic real-time optimization. Can. J. Chem. Eng. 95, 1968–1978 (2017). https://doi.org/10.1002/cjce.22927

    Article  Google Scholar 

  20. Koller, R.W., Ricardez-Sandoval, L.A., Biegler, L.T.: Stochastic back-off algorithm for simultaneous design, control and scheduling of multi-product systems under uncertainty. AIChE J. (2018) (in press). https://doi.org/10.1002/aic.16092

    Article  Google Scholar 

  21. Kwiatkowska M., Szczurek A., Dra̧g P.: Zastosowanie równań różniczkowo-algebraicznych do predykcji zmian parametrw powietrza wewnȩtrznego. Przegla̧d Elektrotechniczny 92, 181–184 (2015). https://doi.org/10.15199/48.2016.05.34

  22. Li, J., Yang, Z.: A QP-free algorithm without a penalty function or a filter for nonlinear general-constrained optimization. Appl. Math. Comput. 316, 52–72 (2018). https://doi.org/10.1016/j.amc.2017.08.013

    Article  MathSciNet  Google Scholar 

  23. Ma, J., Mahapatra, P., Zitney, S.E., Biegler, L.T., Miller, D.C.: D-RM builder: a software tool for generating fast and accurate nonlinear dynamic reduced models from high-fidelity models. Comput. Chem. Eng. 94, 60–74 (2016). https://doi.org/10.1016/j.compchemeng.2016.07.021

    Article  Google Scholar 

  24. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Springer Series in Operation Research and Financial Engineering (2006)

    MATH  Google Scholar 

  25. Pandelidis, D., Anisimov, S.: Numerical study and optimization of the cross-flow Maisotsenko cycle indirect evaporative air cooler. Int. J. Heat Mass Transf. 103, 1029–1041 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.014

    Article  Google Scholar 

  26. Unal, C., Salamci, M.U.: Drug administration in cancer treatment via optimal nonlinear state feedback gain matrix design. IFAC-PapersOnLine 50(1), 9979–9984 (2017). https://doi.org/10.1016/j.ifacol.2017.08.1594

    Article  Google Scholar 

  27. Wan, W., Eason, J.P., Nicholson, B., Biegler, L.T.: Parallel cyclic reduction decomposition for dynamic optimization problems. Comput. Chem. Eng. (2017) (in press). https://doi.org/10.1016/j.compchemeng.2017.09.023

  28. Wang, L., Liu, X., Zhang, Z.: An efficient interior-point algorithm with new non-monotone line search filter method for nonlinear constrained programming. Eng. Optim. 49, 290–310 (2017). https://doi.org/10.1080/0305215X.2016.1176828

    Article  MathSciNet  Google Scholar 

  29. Xu, P.: Production of chemicals using dynamic control of metabolic fluxes. Curr. Opin. Biotechnol. 53, 12–19 (2018). https://doi.org/10.1016/j.copbio.2017.10.009

    Article  Google Scholar 

Download references

Acknowledgements

One of the co-authors, Paweł Dra̧g, received financial support in the framework of “Młoda Kadra”- “Young Staff” 0402/0109/17 at Wrocław University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Dra̧g .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dra̧g, P., Styczeń, K. (2019). The New Approach for Dynamic Optimization with Variability Constraints. In: Fidanova, S. (eds) Recent Advances in Computational Optimization. Studies in Computational Intelligence, vol 795. Springer, Cham. https://doi.org/10.1007/978-3-319-99648-6_3

Download citation

Publish with us

Policies and ethics