Advertisement

Discovering Knowledge from Predominantly Repetitive Data by InterCriteria Analysis

  • Olympia RoevaEmail author
  • Nikolay Ikonomov
  • Peter Vassilev
Chapter
  • 187 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 795)

Abstract

In this paper, InterCriteria analysis (ICrA) approach for finding existing or unknown correlations between multiple objects against multiple criteria is considered. Five different algorithms for InterCriteria relations calculation, namely \(\mu \)-biased, Balanced, \(\nu \)-biased, Unbiased and Weighted, are compared using a new cross-platform software for ICrA approach – ICrAData. The comparison have been done based on numerical data from series of model parameter identification procedures. Real experimental data from an E. coli fed-batch fermentation process are used. In order to estimate the model parameters (\(\mu _{max}, k_{S}\) and \(Y_{S/X}\)) fourteen differently tuned Genetic algorithms are applied. ICrA is executed to evaluate the relation between the model parameters, objective function value and computation time. Some useful conclusions with respect to the selection of the appropriate ICrA algorithm for a given data are established. The considered example illustrates the applicability of the ICrA algorithms and demonstrates the correctness of the ICrA approach.

Keywords

InterCriteria Analysis Weighted algorithm Genetic algorithms E. coli Fermentation process 

Notes

Acknowledgements

Work presented here is partially supported by the National Scientific Fund of Bulgaria under grants DFNI-DN 02/10 “New Instruments for Knowledge Discovery from Data, and their Modelling”.

References

  1. 1.
    Atanassov, K., Mavrov, D., Atanassova, V.: Intercriteria decision making: a new approach for multicriteria decision making, based on index matrices and intuitionistic fuzzy sets. Issues Intuitionistic Fuzzy Sets Generalized Nets 11, 1–8 (2014)Google Scholar
  2. 2.
    Atanassova, V., Mavrov, D., Doukovska, L., Atanassov, K.: Discussion on the threshold values in the InterCriteria decision making approach. Notes on Intuitionistic Fuzzy Sets 20(2), 94–99 (2014)Google Scholar
  3. 3.
    Atanassova, V., Doukovska, L., Atanassov, K., Mavrov, D.: Intercriteria decision making approach to EU member states competitiveness analysis. In: Proceedings of the International Symposium on Business Modeling and Software Design - BMSD’14, pp. 289–294 (2014)Google Scholar
  4. 4.
    Atanassova, V., Doukovska, L., Karastoyanov, D., Capkovic, F.: InterCriteria decision making approach to EU member states competitiveness analysis: trend analysis. In: Intelligent Systems’2014, Advances in Intelligent Systems and Computing, vol. 322, pp. 107–115 (2014)Google Scholar
  5. 5.
    Bureva, V., Sotirova, E., Sotirov, S., Mavrov, D.: Application of the InterCriteria decision making method to Bulgarian universities ranking. Notes on Intuitionistic Fuzzy Sets 21(2), 111–117 (2015)Google Scholar
  6. 6.
    Krawczak, M., Bureva, V., Sotirova, E., Szmidt, E.: Application of the InterCriteria decision making method to universities ranking. Adv. Intell. Syst. Comput. 401, 365–372 (2016)CrossRefGoogle Scholar
  7. 7.
    Ilkova, T., Petrov, M.: InterCriteria analysis for evaluation of the pollution of the Struma river in the Bulgarian section. Notes on Intuitionistic Fuzzy Sets 22(3), 120–130 (2016)Google Scholar
  8. 8.
    Ilkova, T., Petrov, M.: Application of intercriteria analysis to the Mesta river pollution modelling. Notes on Intuitionistic Fuzzy Sets 21(2), 118–125 (2015)Google Scholar
  9. 9.
    Sotirov, S., Sotirova, E., Melin, P., Castillo , O., Atanassov, K.: Modular neural network preprocessing procedure with intuitionistic fuzzy InterCriteria analysis method. In: Flexible Query Answering Systems 2015, Springer International Publishing, pp. 175–186 (2016)Google Scholar
  10. 10.
    Stratiev, D., Sotirov, S., Shishkova, I., Nedelchev, A., Sharafutdinov, I., Veli, A., Mitkova, M., Yordanov, D., Sotirova, E., Atanassova, V., Atanassov, K., Stratiev, D., Rudnev, N., Ribagin, S.: Investigation of relationships between bulk properties and fraction properties of crude oils by application of the Intercriteria Analysis. Pet. Sci. Technol. 34(13), 1113–1120 (2016)CrossRefGoogle Scholar
  11. 11.
    Todinova, S., Mavrov, D., Krumova, S., Marinov, P., Atanassova, V., Atanassov, K., Taneva, S.G.: Blood plasma thermograms dataset analysis by means of InterCriteria and correlation analyses for the case of colorectal cancer. Int. J. Bioautomation 20(1), 115–124 (2016)Google Scholar
  12. 12.
    Zaharieva, B., Doukovska, L., Ribagin, S., Radeva, I.: InterCriteria decision making approach for behterev’s disease analysis. Int. J. Bioautomation 22(2), in press (2018)Google Scholar
  13. 13.
    Roeva, O., Fidanova, S., Vassilev, P., Gepner, P.: InterCriteria analysis of a model parameters identification using genetic algorithm. In: Proceedings of the Federated Conference on Computer Science and Information Systems 5, 501–506 (2015)Google Scholar
  14. 14.
    Roeva, O., Vassilev, P.: InterCriteria analysis of generation gap influence on genetic algorithms performance. Adv. Intell. Syst. Comput. 401, 301–313 (2016)CrossRefGoogle Scholar
  15. 15.
    Angelova M.: Modified genetic algorithms and intuitionistic fuzzy logic for parameter identification of fed-batch cultivation model. Ph.D. thesis, Sofia (2014) (in Bulgarian)Google Scholar
  16. 16.
    Angelova, M., Roeva, O., Pencheva, T.: InterCriteria analysis of crossover and mutation rates relations in simple genetic algorithm. In: Proceedings of the 2015 Federated Conference on Computer Science and Information Systems, vol. 5, pp. 419–424 (2015)Google Scholar
  17. 17.
    Pencheva, T., Angelova, M., Atanassova, V., Roeva, O.: InterCriteria analysis of genetic algorithm parameters in parameter identification. Notes on Intuitionistic Fuzzy Sets 21(2), 99–110 (2015)Google Scholar
  18. 18.
    Pencheva, T., Angelova, M., Vassilev, P., Roeva, O.: InterCriteria analysis approach to parameter identification of a fermentation process model. Adv. Intell. Syst. Comput. 401, 385–397 (2016)CrossRefGoogle Scholar
  19. 19.
    Fidanova, S., Roeva, O., Paprzycki, M., Gepner, P.: InterCriteria analysis of ACO start strategies. In: Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, vol. 8, pp. 547–550 (2016)Google Scholar
  20. 20.
    Roeva, O., Fidanova, S., Paprzycki, M.: InterCriteria analysis of ACO and GA hybrid algorithms. Stud. Comput. Intell. 610, 107–126 (2016)MathSciNetGoogle Scholar
  21. 21.
    Roeva, O., Vassilev, P., Angelova, M., Su, J., Pencheva, T.: Comparison of different algorithms for InterCriteria relations calculation. In: 2016 IEEE 8th International Conference on Intelligent Systems, pp. 567–572 (2016)Google Scholar
  22. 22.
    Atanassov, K., Atanassova, V., Gluhchev, G.: InterCriteria analysis: ideas and problems. Notes on Intuitionistic Fuzzy Sets 21(1), 81–88 (2015)Google Scholar
  23. 23.
    Ikonomov, N., Vassilev, P., Roeva, O.: ICrAData software for InterCriteria analysis. Int. J. Bioautomation 22(1), 1–10 (2018)CrossRefGoogle Scholar
  24. 24.
    Atanassov, K.: Index Matrices: Towards an Augmented Matrix Calculus. Springer International Publishing Switzerland (2014)Google Scholar
  25. 25.
    Atanassov, K.: Generalized index matrices. C. R. de l’Academie Bulgare des Sci. 40(11), 15–18 (1987)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Atanassov, K.: On index matrices, Part 1: standard cases. Adv. Stud. Contemporary Mathe. 20(2), 291–302 (2010)zbMATHGoogle Scholar
  27. 27.
    Atanassov, K.: On index matrices, Part 2: intuitionistic fuzzy case. Proc. Jangjeon Math. Soc. 13(2), 121–126 (2010)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Atanassov, K.: On index matrices. Part 5: 3-dimensional index matrices. Advanced studies. Contemporary Math. 24(4), 423–432 (2014)zbMATHGoogle Scholar
  29. 29.
    Atanassov, K.: Intuitionistic fuzzy sets. VII ITKR session, Sofia, 20–23 June 1983. Reprinted: Int. J. Bioautomation 20(S1), S1–S6 (2016)MathSciNetGoogle Scholar
  30. 30.
    Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin (2012)CrossRefGoogle Scholar
  31. 31.
    Atanassov, K.: Review and new results on intuitionistic fuzzy sets, mathematical foundations of artificial intelligence seminar, Sofia, 1988, preprint IM-MFAIS-1–88. Reprinted:: Int. J. Bioautomation 20(S1), S7–S16 (2016)Google Scholar
  32. 32.
    Atanassov, K., Szmidt, E., Kacprzyk, J.: On intuitionistic fuzzy pairs. Notes on Intuitionistic Fuzzy Sets 19(3), 1–13 (2013)zbMATHGoogle Scholar
  33. 33.
    Goldberg, D.E.: Genetic algorithms in search. Optimization and machine learning. Addison Wesley Longman, London (2006)Google Scholar
  34. 34.
    InterCriteria.net, ICrAData software http://intercriteria.net/software/
  35. 35.
    Atanassova, V.: Interpretation in the intuitionistic fuzzy triangle of the results, obtained by the InterCriteria analysis. In: Proceedings of the 9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), pp. 1369–1374 (2015)Google Scholar
  36. 36.
    Bastin, G., Dochain, D.: On-line Estimation and Adaptive Control of Bioreactors. Elsevier Scientific Publications, Amsterdam (1991)Google Scholar
  37. 37.
    Monod, J.: The growth of bacterial cultures. Ann. Rev. Microbiol. 3, 371 (1949).  https://doi.org/10.1146/annurev.mi.03.100149.002103CrossRefGoogle Scholar
  38. 38.
    Roeva, O., Vassilev, P., Fidanova, S., Paprzycki, M.: InterCriteria analysis of genetic algorithms performance. Stud. Comput. Intell. 655, 235–260 (2016)MathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Olympia Roeva
    • 1
    Email author
  • Nikolay Ikonomov
    • 2
  • Peter Vassilev
    • 1
  1. 1.Institute of Biophysics and Biomedical EngineeringBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Department of Analysis, Geometry and TopologyInstitute of Mathematics and Informatics, Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations