Recent Advances in Computational Optimization pp 213-233 | Cite as
Discovering Knowledge from Predominantly Repetitive Data by InterCriteria Analysis
- 187 Downloads
Abstract
In this paper, InterCriteria analysis (ICrA) approach for finding existing or unknown correlations between multiple objects against multiple criteria is considered. Five different algorithms for InterCriteria relations calculation, namely \(\mu \)-biased, Balanced, \(\nu \)-biased, Unbiased and Weighted, are compared using a new cross-platform software for ICrA approach – ICrAData. The comparison have been done based on numerical data from series of model parameter identification procedures. Real experimental data from an E. coli fed-batch fermentation process are used. In order to estimate the model parameters (\(\mu _{max}, k_{S}\) and \(Y_{S/X}\)) fourteen differently tuned Genetic algorithms are applied. ICrA is executed to evaluate the relation between the model parameters, objective function value and computation time. Some useful conclusions with respect to the selection of the appropriate ICrA algorithm for a given data are established. The considered example illustrates the applicability of the ICrA algorithms and demonstrates the correctness of the ICrA approach.
Keywords
InterCriteria Analysis Weighted algorithm Genetic algorithms E. coli Fermentation processNotes
Acknowledgements
Work presented here is partially supported by the National Scientific Fund of Bulgaria under grants DFNI-DN 02/10 “New Instruments for Knowledge Discovery from Data, and their Modelling”.
References
- 1.Atanassov, K., Mavrov, D., Atanassova, V.: Intercriteria decision making: a new approach for multicriteria decision making, based on index matrices and intuitionistic fuzzy sets. Issues Intuitionistic Fuzzy Sets Generalized Nets 11, 1–8 (2014)Google Scholar
- 2.Atanassova, V., Mavrov, D., Doukovska, L., Atanassov, K.: Discussion on the threshold values in the InterCriteria decision making approach. Notes on Intuitionistic Fuzzy Sets 20(2), 94–99 (2014)Google Scholar
- 3.Atanassova, V., Doukovska, L., Atanassov, K., Mavrov, D.: Intercriteria decision making approach to EU member states competitiveness analysis. In: Proceedings of the International Symposium on Business Modeling and Software Design - BMSD’14, pp. 289–294 (2014)Google Scholar
- 4.Atanassova, V., Doukovska, L., Karastoyanov, D., Capkovic, F.: InterCriteria decision making approach to EU member states competitiveness analysis: trend analysis. In: Intelligent Systems’2014, Advances in Intelligent Systems and Computing, vol. 322, pp. 107–115 (2014)Google Scholar
- 5.Bureva, V., Sotirova, E., Sotirov, S., Mavrov, D.: Application of the InterCriteria decision making method to Bulgarian universities ranking. Notes on Intuitionistic Fuzzy Sets 21(2), 111–117 (2015)Google Scholar
- 6.Krawczak, M., Bureva, V., Sotirova, E., Szmidt, E.: Application of the InterCriteria decision making method to universities ranking. Adv. Intell. Syst. Comput. 401, 365–372 (2016)CrossRefGoogle Scholar
- 7.Ilkova, T., Petrov, M.: InterCriteria analysis for evaluation of the pollution of the Struma river in the Bulgarian section. Notes on Intuitionistic Fuzzy Sets 22(3), 120–130 (2016)Google Scholar
- 8.Ilkova, T., Petrov, M.: Application of intercriteria analysis to the Mesta river pollution modelling. Notes on Intuitionistic Fuzzy Sets 21(2), 118–125 (2015)Google Scholar
- 9.Sotirov, S., Sotirova, E., Melin, P., Castillo , O., Atanassov, K.: Modular neural network preprocessing procedure with intuitionistic fuzzy InterCriteria analysis method. In: Flexible Query Answering Systems 2015, Springer International Publishing, pp. 175–186 (2016)Google Scholar
- 10.Stratiev, D., Sotirov, S., Shishkova, I., Nedelchev, A., Sharafutdinov, I., Veli, A., Mitkova, M., Yordanov, D., Sotirova, E., Atanassova, V., Atanassov, K., Stratiev, D., Rudnev, N., Ribagin, S.: Investigation of relationships between bulk properties and fraction properties of crude oils by application of the Intercriteria Analysis. Pet. Sci. Technol. 34(13), 1113–1120 (2016)CrossRefGoogle Scholar
- 11.Todinova, S., Mavrov, D., Krumova, S., Marinov, P., Atanassova, V., Atanassov, K., Taneva, S.G.: Blood plasma thermograms dataset analysis by means of InterCriteria and correlation analyses for the case of colorectal cancer. Int. J. Bioautomation 20(1), 115–124 (2016)Google Scholar
- 12.Zaharieva, B., Doukovska, L., Ribagin, S., Radeva, I.: InterCriteria decision making approach for behterev’s disease analysis. Int. J. Bioautomation 22(2), in press (2018)Google Scholar
- 13.Roeva, O., Fidanova, S., Vassilev, P., Gepner, P.: InterCriteria analysis of a model parameters identification using genetic algorithm. In: Proceedings of the Federated Conference on Computer Science and Information Systems 5, 501–506 (2015)Google Scholar
- 14.Roeva, O., Vassilev, P.: InterCriteria analysis of generation gap influence on genetic algorithms performance. Adv. Intell. Syst. Comput. 401, 301–313 (2016)CrossRefGoogle Scholar
- 15.Angelova M.: Modified genetic algorithms and intuitionistic fuzzy logic for parameter identification of fed-batch cultivation model. Ph.D. thesis, Sofia (2014) (in Bulgarian)Google Scholar
- 16.Angelova, M., Roeva, O., Pencheva, T.: InterCriteria analysis of crossover and mutation rates relations in simple genetic algorithm. In: Proceedings of the 2015 Federated Conference on Computer Science and Information Systems, vol. 5, pp. 419–424 (2015)Google Scholar
- 17.Pencheva, T., Angelova, M., Atanassova, V., Roeva, O.: InterCriteria analysis of genetic algorithm parameters in parameter identification. Notes on Intuitionistic Fuzzy Sets 21(2), 99–110 (2015)Google Scholar
- 18.Pencheva, T., Angelova, M., Vassilev, P., Roeva, O.: InterCriteria analysis approach to parameter identification of a fermentation process model. Adv. Intell. Syst. Comput. 401, 385–397 (2016)CrossRefGoogle Scholar
- 19.Fidanova, S., Roeva, O., Paprzycki, M., Gepner, P.: InterCriteria analysis of ACO start strategies. In: Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, vol. 8, pp. 547–550 (2016)Google Scholar
- 20.Roeva, O., Fidanova, S., Paprzycki, M.: InterCriteria analysis of ACO and GA hybrid algorithms. Stud. Comput. Intell. 610, 107–126 (2016)MathSciNetGoogle Scholar
- 21.Roeva, O., Vassilev, P., Angelova, M., Su, J., Pencheva, T.: Comparison of different algorithms for InterCriteria relations calculation. In: 2016 IEEE 8th International Conference on Intelligent Systems, pp. 567–572 (2016)Google Scholar
- 22.Atanassov, K., Atanassova, V., Gluhchev, G.: InterCriteria analysis: ideas and problems. Notes on Intuitionistic Fuzzy Sets 21(1), 81–88 (2015)Google Scholar
- 23.Ikonomov, N., Vassilev, P., Roeva, O.: ICrAData software for InterCriteria analysis. Int. J. Bioautomation 22(1), 1–10 (2018)CrossRefGoogle Scholar
- 24.Atanassov, K.: Index Matrices: Towards an Augmented Matrix Calculus. Springer International Publishing Switzerland (2014)Google Scholar
- 25.Atanassov, K.: Generalized index matrices. C. R. de l’Academie Bulgare des Sci. 40(11), 15–18 (1987)MathSciNetzbMATHGoogle Scholar
- 26.Atanassov, K.: On index matrices, Part 1: standard cases. Adv. Stud. Contemporary Mathe. 20(2), 291–302 (2010)zbMATHGoogle Scholar
- 27.Atanassov, K.: On index matrices, Part 2: intuitionistic fuzzy case. Proc. Jangjeon Math. Soc. 13(2), 121–126 (2010)MathSciNetzbMATHGoogle Scholar
- 28.Atanassov, K.: On index matrices. Part 5: 3-dimensional index matrices. Advanced studies. Contemporary Math. 24(4), 423–432 (2014)zbMATHGoogle Scholar
- 29.Atanassov, K.: Intuitionistic fuzzy sets. VII ITKR session, Sofia, 20–23 June 1983. Reprinted: Int. J. Bioautomation 20(S1), S1–S6 (2016)MathSciNetGoogle Scholar
- 30.Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin (2012)CrossRefGoogle Scholar
- 31.Atanassov, K.: Review and new results on intuitionistic fuzzy sets, mathematical foundations of artificial intelligence seminar, Sofia, 1988, preprint IM-MFAIS-1–88. Reprinted:: Int. J. Bioautomation 20(S1), S7–S16 (2016)Google Scholar
- 32.Atanassov, K., Szmidt, E., Kacprzyk, J.: On intuitionistic fuzzy pairs. Notes on Intuitionistic Fuzzy Sets 19(3), 1–13 (2013)zbMATHGoogle Scholar
- 33.Goldberg, D.E.: Genetic algorithms in search. Optimization and machine learning. Addison Wesley Longman, London (2006)Google Scholar
- 34.InterCriteria.net, ICrAData software http://intercriteria.net/software/
- 35.Atanassova, V.: Interpretation in the intuitionistic fuzzy triangle of the results, obtained by the InterCriteria analysis. In: Proceedings of the 9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT), pp. 1369–1374 (2015)Google Scholar
- 36.Bastin, G., Dochain, D.: On-line Estimation and Adaptive Control of Bioreactors. Elsevier Scientific Publications, Amsterdam (1991)Google Scholar
- 37.Monod, J.: The growth of bacterial cultures. Ann. Rev. Microbiol. 3, 371 (1949). https://doi.org/10.1146/annurev.mi.03.100149.002103CrossRefGoogle Scholar
- 38.Roeva, O., Vassilev, P., Fidanova, S., Paprzycki, M.: InterCriteria analysis of genetic algorithms performance. Stud. Comput. Intell. 655, 235–260 (2016)MathSciNetGoogle Scholar