Contraction Methods for Correlation Clustering: The Order is Important

  • László AszalósEmail author
  • Mária Bakó
Part of the Studies in Computational Intelligence book series (SCI, volume 795)


Correlation clustering is a NP-hard problem, and for large graphs finding even just a good approximation of the optimal solution is a hard task. In previous articles we have suggested a contraction method and its divide and conquer variant. In this article we examine the effect of executing the steps of the contraction method in a different order.


Correlation Clustering Contraction Method Attractive Cluster Relative Tolerance Typical Random Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aszalós, L., Bakó, M.: Advanced search methods (in Hungarian). (2012)
  2. 2.
    Aszalós, L., Bakó, M.: Correlation clustering: divide and conquer. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.) Position Papers of the 2016 Federated Conference on Computer Science and Information Systems, Annals of Computer Science and Information Systems, vol. 9, pp. 73–78. PTI (2016).
  3. 3.
    Aszalós, L., Mihálydeák, T.: Rough clustering generated by correlation clustering. In: Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, pp. 315–324. Springer, Berlin, Heidelberg (2013). Scholar
  4. 4.
    Aszalós, L., Mihálydeák, T.: Rough classification based on correlation clustering. In: Rough Sets and Knowledge Technology, pp. 399–410. Springer (2014). Scholar
  5. 5.
    Aszalós, L., Mihálydeák, T.: Correlation clustering by contraction, a more effective method. In: Recent Advances in Computational Optimization, vol. 655, pp. 81–95. Springer (2016). Scholar
  6. 6.
    Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004). Scholar
  7. 7.
    Bhattacharya, A., De, R.K.: Divisive correlation clustering algorithm (dcca) for grouping of genes: detecting varying patterns in expression profiles. Bioinformatics 24(11), 1359–1366 (2008). Scholar
  8. 8.
    Chen, Z., Yang, S., Li, L., Xie, Z.: A clustering approximation mechanism based on data spatial correlation in wireless sensor networks. In: Wireless Telecommunications Symposium (WTS), 2010, pp. 1–7. IEEE (2010).
  9. 9.
    DuBois, T., Golbeck, J., Kleint, J., Srinivasan, A.: Improving recommendation accuracy by clustering social networks with trust. Recommender Systems & the Social Web 532, 1–8 (2009).
  10. 10.
    Kim, S., Nowozin, S., Kohli, P., Yoo, C.D.: Higher-order correlation clustering for image segmentation. In: Advances in Neural Information Processing Systems, pp. 1530–1538 (2011). DOI Scholar
  11. 11.
    Néda, Z., Florian, R., Ravasz, M., Libál, A., Györgyi, G.: Phase transition in an optimal clusterization model. Physica A: Stat. Mech. Appl. 362(2), 357–368 (2006). Scholar
  12. 12.
    Yang, B., Cheung, W.K., Liu, J.: Community mining from signed social networks. Knowl. Data Eng. IEEE Trans. 19(10), 1333–1348 (2007)CrossRefGoogle Scholar
  13. 13.
    Zahn Jr, C.: Approximating symmetric relations by equivalence relations. J. Soc. Ind. Appl. Math. 12(4), 840–847 (1964).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of InformaticsUniversity of DebrecenDebrecenHungary
  2. 2.Faculty of Economics at University of DebrecenDebrecenHungary

Personalised recommendations