Advertisement

A Continuation Method for Visualizing Planar Real Algebraic Curves with Singularities

  • Changbo Chen
  • Wenyuan WuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11077)

Abstract

We present a new method for visualizing planar real algebraic curves inside a bounding box based on numerical continuation and critical point methods. Since the topology of the curve near a singular point is not numerically stable, we trace the curve only outside neighborhoods of singular points and replace each neighborhood simply by a point, which produces a polygonal approximation that is \(\epsilon \)-close to the curve. Such an approximation is more stable for defining the numerical connectedness of the complement of the curve, which is important for applications such as solving bi-parametric polynomial systems.

The algorithm starts by computing three types of key points of the curve, namely the intersection of the curve with small circles centered at singular points, regular critical points of every connected component of the curve, as well as intersection points of the curve with the given bounding box. It then traces the curve starting with and in the order of the above three types of points. This basic scheme is further enhanced by several optimizations, such as grouping singular points in natural clusters and tracing the curve by a try-and-resume strategy. The effectiveness of the algorithm is illustrated by numerous examples.

Notes

Acknowledgements

The authors would like to thank Chee K. Yap and the reviewers, in particular Reviewer 3, for valuable suggestions. This work is partially supported by the projects NSFC (11471307, 11671377, 61572024), and the Key Research Program of Frontier Sciences of CAS (QYZDB-SSW-SYS026).

References

  1. 1.
    Bajaj, C., Xu, G.: Piecewise rational approximations of real algebraic curves. J. Comput. Math. 15(1), 55–71 (1997)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Beltrán, C., Leykin, A.: Robust certified numerical homotopy tracking. Found. Comput. Math. 13(2), 253–295 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bennett, H., Papadopoulou, E., Yap, C.: Planar minimization diagrams via subdivision with applications to anisotropic Voronoi diagrams. Comput. Graph. Forum 35 (2016)Google Scholar
  4. 4.
    Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, Secaucus (1998).  https://doi.org/10.1007/978-1-4612-0701-6CrossRefzbMATHGoogle Scholar
  5. 5.
    Bresenham, J.: A linear algorithm for incremental digital display of circular arcs. Commun. ACM 20(2), 100–106 (1977)CrossRefGoogle Scholar
  6. 6.
    Burr, M., Choi, S.W., Galehouse, B., Yap, C.K.: Complete subdivision algorithms, II: isotopic meshing of singular algebraic curves. J. Symb. Comput. 47(2), 131–152 (2012)CrossRefGoogle Scholar
  7. 7.
    Chandler, R.E.: A tracking algorithm for implicitly defined curves. IEEE Comput. Graph. Appl. 8(2), 83–89 (1988)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen, C., Davenport, J., May, J., Moreno Maza, M., Xia, B., Xiao, R.: Triangular decomposition of semi-algebraic systems. J. Symb. Comp. 49, 3–26 (2013)CrossRefGoogle Scholar
  9. 9.
    Chen, C., Wu, W.: A numerical method for analyzing the stability of bi-parametric biological systems. In: SYNASC 2016, pp. 91–98 (2016)Google Scholar
  10. 10.
    Chen, C., Wu, W.: A numerical method for computing border curves of bi-parametric real polynomial systems and applications. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2016. LNCS, vol. 9890, pp. 156–171. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45641-6_11CrossRefGoogle Scholar
  11. 11.
    Chen, C., Wu, W., Feng, Y.: Full rank representation of real algebraic sets and applications. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 51–65. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66320-3_5CrossRefGoogle Scholar
  12. 12.
    Cheng, J., Lazard, S., Peñaranda, L., Pouget, M., Rouillier, F., Tsigaridas, E.: On the topology of real algebraic plane curves. Math. Comput. Sci. 4(1), 113–137 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975).  https://doi.org/10.1007/3-540-07407-4_17CrossRefGoogle Scholar
  14. 14.
    Daouda, D., Mourrain, B., Ruatta, O.: On the computation of the topology of a non-reduced implicit space curve. In: ISSAC 2008, pp. 47–54 (2008)Google Scholar
  15. 15.
    Emeliyanenko, P., Berberich, E., Sagraloff, M.: Visualizing arcs of implicit algebraic curves, exactly and fast. In: Bebis, G., et al. (eds.) ISVC 2009. LNCS, vol. 5875, pp. 608–619. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10331-5_57CrossRefGoogle Scholar
  16. 16.
    Gomes, A.J.: A continuation algorithm for planar implicit curves with singularities. Comput. Graph. 38, 365–373 (2014)CrossRefGoogle Scholar
  17. 17.
    Hauenstein, J.D.: Numerically computing real points on algebraic sets. Acta Applicandae Mathematicae 125(1), 105–119 (2012)CrossRefGoogle Scholar
  18. 18.
    Hong, H.: An efficient method for analyzing the topology of plane real algebraic curves. Math. Comput. Simul. 42(4), 571–582 (1996)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Imbach, R., Moroz, G., Pouget, M.: A certified numerical algorithm for the topology of resultant and discriminant curves. J. Symb. Comput. 80, 285–306 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Jin, K., Cheng, J.-S., Gao, X.-S.: On the topology and visualization of plane algebraic curves. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, vol. 9301, pp. 245–259. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24021-3_19CrossRefGoogle Scholar
  21. 21.
    Labs, O.: A list of challenges for real algebraic plane curve visualization software. In: Emiris, I., Sottile, F., Theobald, T. (eds.) Nonlinear Computational Geometry. The IMA Volumes in Mathematics and Its Applications, vol. 151, pp. 137–164. Springer, New York (2010).  https://doi.org/10.1007/978-1-4419-0999-2_6CrossRefGoogle Scholar
  22. 22.
    Lazard, D., Rouillier, F.: Solving parametric polynomial systems. J. Symb. Comput. 42(6), 636–667 (2007)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Leykin, A., Verschelde, J., Zhao, A.: Newton’s method with deflation for isolated singularities of polynomial systems. TCS 359(1), 111–122 (2006)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Lopes, H., Oliveira, J.B., de Figueiredo, L.H.: Robust adaptive polygonal approximation of implicit curves. Comput. Graph. 26(6), 841–852 (2002)CrossRefGoogle Scholar
  25. 25.
    Martin, B., Goldsztejn, A., Granvilliers, L., Jermann, C.: Certified parallelotope continuation for one-manifolds. SIAM J. Numer. Anal. 51(6), 3373–3401 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Rouillier, F., Roy, M.F., Safey El Din, M.: Finding at least one point in each connected component of a real algebraic set defined by a single equation. J. Complex. 16(4), 716–750 (2000)CrossRefGoogle Scholar
  27. 27.
    Seidel, R., Wolpert, N.: On the exact computation of the topology of real algebraic curves. In: Proceedings of the Twenty-First Annual Symposium on Computational Geometry, SCG 2005, pp. 107–115. ACM, New York (2005)Google Scholar
  28. 28.
    Shen, F., Wu, W., Xia, B.: Real root isolation of polynomial equations based on hybrid computation. In: ASCM 2012, pp. 375–396 (2012)Google Scholar
  29. 29.
    Wu, W., Chen, C., Reid, G.: Penalty function based critical point approach to compute real witness solution points of polynomial systems. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 377–391. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66320-3_27CrossRefGoogle Scholar
  30. 30.
    Wu, W., Reid, G., Feng, Y.: Computing real witness points of positive dimensional polynomial systems. Theor. Comput. Sci. 681, 217–231 (2017)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Yang, L., Xia, B.: Real solution classifications of a class of parametric semi-algebraic systems. In: A3L 2005, pp. 281–289 (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Chongqing Key Laboratory of Automated Reasoning and Cognition, Chongqing Institute of Green and Intelligent TechnologyChinese Academy of Sciences, University of Chinese Academy of SciencesBeijingChina

Personalised recommendations