Advertisement

Symbolic-Numeric Methods for Nonlinear Integro-Differential Modeling

  • François BoulierEmail author
  • Hélène Castel
  • Nathalie Corson
  • Valentina Lanza
  • François Lemaire
  • Adrien Poteaux
  • Alban Quadrat
  • Nathalie Verdière
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11077)

Abstract

This paper presents a proof of concept for symbolic and numeric methods dedicated to the parameter estimation problem for models formulated by means of nonlinear integro-differential equations (IDE). In particular, we address: the computation of the model input-output equation and the numerical integration of IDE systems.

Notes

Acknowledgment

This work has been supported by the bilateral project ANR-17-CE40-0036 and DFG-391322026 SYMBIONT.

References

  1. 1.
    Bächler, T., Gerdt, V., Lange-Hegermann, M., Robertz, D.: Algorithmic Thomas decomposition of algebraic and differential systems. J. Symb. Comput. 47(10), 1233–1266 (2012)CrossRefGoogle Scholar
  2. 2.
    Bavula, V.V.: The algebra of integro-differential operators on a polynomial algebra. J. Lond. Math. Soc. 83(2), 517–543 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bavula, V.V.: The algebra of integro-differential operators on an affine line and its modules. J. Pure Appl. Algebra 17(3), 495–529 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bavula, V.V.: The algebra of polynomial integro-differential operators is a holonomic bimodule over the subalgebra of polynomial differential operators. Algebras Represent. Theory 17(1), 275–288 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Boulier, F., et al.: BLINEIDE. http://cristal.univ-lille.fr/~boulier/BLINEIDE
  6. 6.
    Boulier, F., Lemaire, F.: A normal form algorithm for regular differential chains. Math. Comput. Sci. 4(2), 185–201 (2010).  https://doi.org/10.1007/s11786-010-0060-3MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Boulier, F., Cheb-Terrab, E.: DifferentialAlgebra. Package of MapleSoft MAPLE Standard Library Since MAPLE 14 (2008)Google Scholar
  8. 8.
    Boulier, F., Korporal, A., Lemaire, F., Perruquetti, W., Poteaux, A., Ushirobira, R.: An algorithm for converting nonlinear differential equations to integral equations with an application to parameter estimation from noisy data. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 28–43. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10515-4_3CrossRefGoogle Scholar
  9. 9.
    Boulier, F., Lallemand, J., Lemaire, F., Regensburger, G., Rosenkranz, M.: Additive normal forms and integration of differential fractions. J. Symb. Comput. 77, 16–38 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the radical of a finitely generated differential ideal. In: ISSAC 1995: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, pp. 158–166. ACM Press, New York (1995). http://hal.archives-ouvertes.fr/hal-00138020
  11. 11.
    Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for radicals of finitely generated differential ideals. Appl. Algebra Eng. Commun. Comput. 20(1), 73–121 (2009). (1997 Technical report IT306 of the LIFL).  https://doi.org/10.1007/s00200-009-0091-7
  12. 12.
    Boulier, F., Lemaire, F., Moreno Maza, M.: Computing differential characteristic sets by change of ordering. J. Symb. Comput. 45(1), 124–149 (2010).  https://doi.org/10.1016/j.jsc.2009.09.04MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Boulier, F., Lemaire, F., Moreno Maza, M., Poteaux, A.: An equivalence theorem for regular differential chains. J. Symb. Comput. (2018, to appear)Google Scholar
  14. 14.
    Boulier, F., Lemaire, F., Rosenkranz, M., Ushirobira, R., Verdière, N.: On symbolic approaches to integro-differential equations. In: Advances in Delays and Dynamics. Springer (2017). https://hal.archives-ouvertes.fr/hal-01367138
  15. 15.
    Brunner, H., van der Hoeven, P.J.: The Numerical Solution of Volterra Equations. North-Holland, Amsterdam (1986)Google Scholar
  16. 16.
    Butcher, J.C.: On Runge-Kutta processes of high order. J. Austral. Math. Soc. IV, Part 2 4, 179–194 (1964)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Denis-Vidal, L., Joly-Blanchard, G., Noiret, C.: System identifiability (symbolic computation) and parameter estimation (numerical computation). Numer. Algorithms 34, 282–292 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Feldstein, A., Sopka, J.R.: Numerical methods for nonlinear Volterra integro-differential equations. SIAM J. Numer. Anal. 11(4), 826–846 (1974)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gao, X., Guo, L.: Constructions of free commutative integro-differential algebras. In: Barkatou, M., Cluzeau, T., Regensburger, G., Rosenkranz, M. (eds.) AADIOS 2012. LNCS, vol. 8372, pp. 1–22. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54479-8_1CrossRefGoogle Scholar
  20. 20.
    Guo, L., Regensburger, G., Rosenkranz, M.: On integro-differential algebras. J. Pure Appl. Algebra 218(3), 456–473 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems. Computational Mathematics, vol. 8, 2nd edn. Springer, New York (1993)zbMATHGoogle Scholar
  22. 22.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Computational Mathematics, vol. 14, 2nd edn. Springer, New York (1996)zbMATHGoogle Scholar
  23. 23.
    Jerri, A.J.: Introduction to Integral Equations with Applications. Monographs and Textbooks in Pure and Applied Mathematics, vol. 93. Marcel Dekker Inc., New York (1985)zbMATHGoogle Scholar
  24. 24.
    Keener, J., Sneyd, J.: Mathematical Physiology I: Cellular Physiology. Interdisciplinary Applied Mathematics, vol. 8/I, 2nd edn. Springer, New York (2010)zbMATHGoogle Scholar
  25. 25.
    Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New York (1973)zbMATHGoogle Scholar
  26. 26.
    Kostitzin, V.A.: Biologie Mathématique. Armand Colin (1937). (with a foreword by Vito Volterra)Google Scholar
  27. 27.
    Ljung, L., Glad, S.T.: On global identifiability for arbitrary model parametrisations. Automatica 30, 265–276 (1994)CrossRefGoogle Scholar
  28. 28.
    Mansfield, E.L.: Differential Gröbner bases. Ph.D. thesis, University of Sydney, Australia (1991)Google Scholar
  29. 29.
    Moulay, D., Verdière, N., Denis-Vidal, L.: Identifiability of parameters in an epidemiologic model modeling the transmission of the Chikungunya. In: Proceedings of the 9ème Conférence Internationale de Modélisation, Optimisation et SIMulation (2012)Google Scholar
  30. 30.
    Ollivier, F.: Le problème de l’identifiabilité structurelle globale: approche théorique, méthodes effectives et bornes de complexité. Ph.D. thesis, École Polytechnique, Palaiseau, France (1990)Google Scholar
  31. 31.
    Paulsson, J., Elf, J.: Stochastic modeling of intracellular kinetics. In: Szallasi, Z., Stelling, J., Periwal, V. (eds.) System Modeling in Cellular Biology: From Concepts to Nuts and Bolts, pp. 149–175. The MIT Press, Cambridge (2006)CrossRefGoogle Scholar
  32. 32.
    Pavé, A.: Modeling Living Systems: From Cell to Ecosystem. ISTE/Wiley, Hoboken (2012)CrossRefGoogle Scholar
  33. 33.
    Quadrat, A., Regensburger, G.: Polynomial solutions and annihilators of ordinary integro-differential operators. In: IFAC Proceedings, vol. 46, no. 2, pp. 308–313 (2013)Google Scholar
  34. 34.
    Reid, G.J., Wittkopf, A.D., Boulton, A.: Reduction of systems of nonlinear partial differential equations to simplified involutive forms. Eur. J. Appl. Math. 7(6), 635–666 (1996)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ritt, J.F.: Differential Algebra, American Mathematical Society Colloquium Publications, vol. 33. American Mathematical Society, New York (1950)Google Scholar
  36. 36.
    Rosenkranz, M., Regensburger, G.: Integro-differential polynomials and operators. In: Jeffrey, D. (ed.) ISSAC 2008: Proceedings of the 2008 International Symposium on Symbolic and Algebraic Computation. ACM Press (2008)Google Scholar
  37. 37.
    Shampine, L.F., Thompson, S.: Solving DDEs in MATLAB. Appl. Numer. Math. 37, 441–458 (2001)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Sofroniou, M.: Order stars and linear stability theory. J. Symb. Comput. 21, 101–131 (1996)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Verdière, N., Denis-Vidal, L., Joly-Blanchard, G.: A new method for estimating derivatives based on a distribution approach. Numer. Algorithms 61, 163–186 (2012)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Verdière, N., Denis-Vidal, L., Joly-Blanchard, G., Domurado, D.: Identifiability and estimation of pharmacokinetic parameters for the ligands of the macrophage mannose receptor. Int. J. Appl. Math. Comput. Sci. 15(4), 517–526 (2005)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Wikipedia, the Free Encyclopedia: Delay Differential Equations. https://en.wikipedia.org/wiki/Delay_differential_equation
  42. 42.
    Zhu, S.: Modeling, identifiability analysis and parameter estimation of a spatial-transmission model of Chikungunya in a spatially continuous domain. Ph.D. thesis, Université de Technologie de Compiègne, Compiègne, France (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • François Boulier
    • 1
    Email author
  • Hélène Castel
    • 3
  • Nathalie Corson
    • 2
  • Valentina Lanza
    • 2
  • François Lemaire
    • 1
  • Adrien Poteaux
    • 1
  • Alban Quadrat
    • 1
  • Nathalie Verdière
    • 2
  1. 1.Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de LilleLilleFrance
  2. 2.Normandie Univ, France, UNIHAVRE, LMAH, FR CNRS 3335, ISCNLe HavreFrance
  3. 3.INSERM, DC2N, Normandie Univ, UNIROUENRouenFrance

Personalised recommendations