Symbolic-Numeric Methods for Nonlinear Integro-Differential Modeling

  • François BoulierEmail author
  • Hélène Castel
  • Nathalie Corson
  • Valentina Lanza
  • François Lemaire
  • Adrien Poteaux
  • Alban Quadrat
  • Nathalie Verdière
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11077)


This paper presents a proof of concept for symbolic and numeric methods dedicated to the parameter estimation problem for models formulated by means of nonlinear integro-differential equations (IDE). In particular, we address: the computation of the model input-output equation and the numerical integration of IDE systems.



This work has been supported by the bilateral project ANR-17-CE40-0036 and DFG-391322026 SYMBIONT.


  1. 1.
    Bächler, T., Gerdt, V., Lange-Hegermann, M., Robertz, D.: Algorithmic Thomas decomposition of algebraic and differential systems. J. Symb. Comput. 47(10), 1233–1266 (2012)CrossRefGoogle Scholar
  2. 2.
    Bavula, V.V.: The algebra of integro-differential operators on a polynomial algebra. J. Lond. Math. Soc. 83(2), 517–543 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bavula, V.V.: The algebra of integro-differential operators on an affine line and its modules. J. Pure Appl. Algebra 17(3), 495–529 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bavula, V.V.: The algebra of polynomial integro-differential operators is a holonomic bimodule over the subalgebra of polynomial differential operators. Algebras Represent. Theory 17(1), 275–288 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Boulier, F., et al.: BLINEIDE.
  6. 6.
    Boulier, F., Lemaire, F.: A normal form algorithm for regular differential chains. Math. Comput. Sci. 4(2), 185–201 (2010). Scholar
  7. 7.
    Boulier, F., Cheb-Terrab, E.: DifferentialAlgebra. Package of MapleSoft MAPLE Standard Library Since MAPLE 14 (2008)Google Scholar
  8. 8.
    Boulier, F., Korporal, A., Lemaire, F., Perruquetti, W., Poteaux, A., Ushirobira, R.: An algorithm for converting nonlinear differential equations to integral equations with an application to parameter estimation from noisy data. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 28–43. Springer, Cham (2014). Scholar
  9. 9.
    Boulier, F., Lallemand, J., Lemaire, F., Regensburger, G., Rosenkranz, M.: Additive normal forms and integration of differential fractions. J. Symb. Comput. 77, 16–38 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the radical of a finitely generated differential ideal. In: ISSAC 1995: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, pp. 158–166. ACM Press, New York (1995).
  11. 11.
    Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for radicals of finitely generated differential ideals. Appl. Algebra Eng. Commun. Comput. 20(1), 73–121 (2009). (1997 Technical report IT306 of the LIFL).
  12. 12.
    Boulier, F., Lemaire, F., Moreno Maza, M.: Computing differential characteristic sets by change of ordering. J. Symb. Comput. 45(1), 124–149 (2010). Scholar
  13. 13.
    Boulier, F., Lemaire, F., Moreno Maza, M., Poteaux, A.: An equivalence theorem for regular differential chains. J. Symb. Comput. (2018, to appear)Google Scholar
  14. 14.
    Boulier, F., Lemaire, F., Rosenkranz, M., Ushirobira, R., Verdière, N.: On symbolic approaches to integro-differential equations. In: Advances in Delays and Dynamics. Springer (2017).
  15. 15.
    Brunner, H., van der Hoeven, P.J.: The Numerical Solution of Volterra Equations. North-Holland, Amsterdam (1986)Google Scholar
  16. 16.
    Butcher, J.C.: On Runge-Kutta processes of high order. J. Austral. Math. Soc. IV, Part 2 4, 179–194 (1964)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Denis-Vidal, L., Joly-Blanchard, G., Noiret, C.: System identifiability (symbolic computation) and parameter estimation (numerical computation). Numer. Algorithms 34, 282–292 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Feldstein, A., Sopka, J.R.: Numerical methods for nonlinear Volterra integro-differential equations. SIAM J. Numer. Anal. 11(4), 826–846 (1974)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gao, X., Guo, L.: Constructions of free commutative integro-differential algebras. In: Barkatou, M., Cluzeau, T., Regensburger, G., Rosenkranz, M. (eds.) AADIOS 2012. LNCS, vol. 8372, pp. 1–22. Springer, Heidelberg (2014). Scholar
  20. 20.
    Guo, L., Regensburger, G., Rosenkranz, M.: On integro-differential algebras. J. Pure Appl. Algebra 218(3), 456–473 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems. Computational Mathematics, vol. 8, 2nd edn. Springer, New York (1993)zbMATHGoogle Scholar
  22. 22.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Computational Mathematics, vol. 14, 2nd edn. Springer, New York (1996)zbMATHGoogle Scholar
  23. 23.
    Jerri, A.J.: Introduction to Integral Equations with Applications. Monographs and Textbooks in Pure and Applied Mathematics, vol. 93. Marcel Dekker Inc., New York (1985)zbMATHGoogle Scholar
  24. 24.
    Keener, J., Sneyd, J.: Mathematical Physiology I: Cellular Physiology. Interdisciplinary Applied Mathematics, vol. 8/I, 2nd edn. Springer, New York (2010)zbMATHGoogle Scholar
  25. 25.
    Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New York (1973)zbMATHGoogle Scholar
  26. 26.
    Kostitzin, V.A.: Biologie Mathématique. Armand Colin (1937). (with a foreword by Vito Volterra)Google Scholar
  27. 27.
    Ljung, L., Glad, S.T.: On global identifiability for arbitrary model parametrisations. Automatica 30, 265–276 (1994)CrossRefGoogle Scholar
  28. 28.
    Mansfield, E.L.: Differential Gröbner bases. Ph.D. thesis, University of Sydney, Australia (1991)Google Scholar
  29. 29.
    Moulay, D., Verdière, N., Denis-Vidal, L.: Identifiability of parameters in an epidemiologic model modeling the transmission of the Chikungunya. In: Proceedings of the 9ème Conférence Internationale de Modélisation, Optimisation et SIMulation (2012)Google Scholar
  30. 30.
    Ollivier, F.: Le problème de l’identifiabilité structurelle globale: approche théorique, méthodes effectives et bornes de complexité. Ph.D. thesis, École Polytechnique, Palaiseau, France (1990)Google Scholar
  31. 31.
    Paulsson, J., Elf, J.: Stochastic modeling of intracellular kinetics. In: Szallasi, Z., Stelling, J., Periwal, V. (eds.) System Modeling in Cellular Biology: From Concepts to Nuts and Bolts, pp. 149–175. The MIT Press, Cambridge (2006)CrossRefGoogle Scholar
  32. 32.
    Pavé, A.: Modeling Living Systems: From Cell to Ecosystem. ISTE/Wiley, Hoboken (2012)CrossRefGoogle Scholar
  33. 33.
    Quadrat, A., Regensburger, G.: Polynomial solutions and annihilators of ordinary integro-differential operators. In: IFAC Proceedings, vol. 46, no. 2, pp. 308–313 (2013)Google Scholar
  34. 34.
    Reid, G.J., Wittkopf, A.D., Boulton, A.: Reduction of systems of nonlinear partial differential equations to simplified involutive forms. Eur. J. Appl. Math. 7(6), 635–666 (1996)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ritt, J.F.: Differential Algebra, American Mathematical Society Colloquium Publications, vol. 33. American Mathematical Society, New York (1950)Google Scholar
  36. 36.
    Rosenkranz, M., Regensburger, G.: Integro-differential polynomials and operators. In: Jeffrey, D. (ed.) ISSAC 2008: Proceedings of the 2008 International Symposium on Symbolic and Algebraic Computation. ACM Press (2008)Google Scholar
  37. 37.
    Shampine, L.F., Thompson, S.: Solving DDEs in MATLAB. Appl. Numer. Math. 37, 441–458 (2001)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Sofroniou, M.: Order stars and linear stability theory. J. Symb. Comput. 21, 101–131 (1996)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Verdière, N., Denis-Vidal, L., Joly-Blanchard, G.: A new method for estimating derivatives based on a distribution approach. Numer. Algorithms 61, 163–186 (2012)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Verdière, N., Denis-Vidal, L., Joly-Blanchard, G., Domurado, D.: Identifiability and estimation of pharmacokinetic parameters for the ligands of the macrophage mannose receptor. Int. J. Appl. Math. Comput. Sci. 15(4), 517–526 (2005)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Wikipedia, the Free Encyclopedia: Delay Differential Equations.
  42. 42.
    Zhu, S.: Modeling, identifiability analysis and parameter estimation of a spatial-transmission model of Chikungunya in a spatially continuous domain. Ph.D. thesis, Université de Technologie de Compiègne, Compiègne, France (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • François Boulier
    • 1
    Email author
  • Hélène Castel
    • 3
  • Nathalie Corson
    • 2
  • Valentina Lanza
    • 2
  • François Lemaire
    • 1
  • Adrien Poteaux
    • 1
  • Alban Quadrat
    • 1
  • Nathalie Verdière
    • 2
  1. 1.Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de LilleLilleFrance
  2. 2.Normandie Univ, France, UNIHAVRE, LMAH, FR CNRS 3335, ISCNLe HavreFrance
  3. 3.INSERM, DC2N, Normandie Univ, UNIROUENRouenFrance

Personalised recommendations