Computation of Pommaret Bases Using Syzygies

  • Bentolhoda Binaei
  • Amir HashemiEmail author
  • Werner M. Seiler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11077)


We investigate the application of syzygies for efficiently computing (finite) Pommaret bases. For this purpose, we first describe a non-trivial variant of Gerdt’s algorithm [10] to construct an involutive basis for the input ideal as well as an involutive basis for the syzygy module of the output basis. Then we apply this new algorithm in the context of Seiler’s method to transform a given ideal into quasi stable position to ensure the existence of a finite Pommaret basis [19]. This new approach allows us to avoid superfluous reductions in the iterative computation of Janet bases required by this method. We conclude the paper by proposing an involutive variant of the signature based algorithm of Gao et al. [8] to compute simultaneously a Gröbner basis for a given ideal and for the syzygy module of the input basis. All the presented algorithms have been implemented in Maple and their performance is evaluated via a set of benchmark ideals.



The research of the second author was in part supported by a grant from IPM (No. 95550420). The work of the third author was partially performed as part of the H2020-FETOPEN-2016-2017-CSA project \(SC^{2}\) (712689).


  1. 1.
    Binaei, B., Hashemi, A., Seiler, W.M.: Improved computation of involutive bases. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds.) CASC 2016. LNCS, vol. 9890, pp. 58–72. Springer, Cham (2016). Scholar
  2. 2.
    Buchberger, B.: A criterion for detecting unnecessary reductions in the construction of Gröbner-bases. In: Ng, E.W. (ed.) EUROSM 1979. LNCS, vol. 72, pp. 3–21. Springer, Heidelberg (1979). Scholar
  3. 3.
    Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. University of Innsbruck, Mathematisches Institut (Diss.), Innsbruck (1965)Google Scholar
  4. 4.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 3rd edn. Springer, New York (2007). Scholar
  5. 5.
    Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics, vol. 185, 2nd edn. Springer, New York (2005). Scholar
  6. 6.
    Faugère, J.C.: A new efficient algorithm for computing Gröbner bases \((F_4)\). J. Pure Appl. Algebra 139(1–3), 61–88 (1999). Scholar
  7. 7.
    Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to zero \((F_5)\). In: Proceedings of ISSAC 2002, pp. 75–83 (2002)Google Scholar
  8. 8.
    Gao, S., Volny, F.I., Wang, M.: A new framework for computing Gröbner bases. Math. Comput. 85(297), 449–465 (2016). Scholar
  9. 9.
    Gebauer, R., Möller, H.: On an installation of Buchberger’s algorithm. J. Symb. Comput. 6(2–3), 275–286 (1988). Scholar
  10. 10.
    Gerdt, V.P.: Involutive algorithms for computing Gröbner bases. In: Computational Commutative and Non-commutative Algebraic Geometry. Proceedings of the NATO Advanced Research Workshop, pp. 199–225. IOS Press, Amsterdam (2005)Google Scholar
  11. 11.
    Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Math. Comput. Simul. 45(5–6), 519–541 (1998). Scholar
  12. 12.
    Gerdt, V.P., Hashemi, A., Alizadeh, B.M.: Involutive bases algorithm incorporating F\(_5\) criterion. J. Symb. Comput. 59, 1–20 (2013). Scholar
  13. 13.
    Hashemi, A., Schweinfurter, M., Seiler, W.: Deterministic genericity for polynomial ideals. J. Symb. Comput. 86, 20–50 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Janet, M.: Sur les systèmes d’équations aux dérivées partielles. C. R. Acad. Sci. Paris 170, 1101–1103 (1920)zbMATHGoogle Scholar
  15. 15.
    Lazard, D.: Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. In: van Hulzen, J.A. (ed.) EUROCAL 1983. LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983). Scholar
  16. 16.
    Möller, H., Mora, T., Traverso, C.: Gröbner bases computation using syzygies. In: Proceedings of ISSAC 1992, pp. 320–328 (1992)Google Scholar
  17. 17.
    Pommaret, J.: Systems of Partial Differential Equations and Lie Pseudogroups. Gordon and Breach Science Publishers, Philadelphia (1978)zbMATHGoogle Scholar
  18. 18.
    Schreyer, F.O.: Die Berechnung von Syzygien mit dem verallgemeinerten Weierstrass’schen Divisionssatz. Master’s thesis, University of Hamburg, Germany (1980)Google Scholar
  19. 19.
    Seiler, W.M.: A combinatorial approach to involution and \(\delta \)-regularity. II: structure analysis of polynomial modules with Pommaret bases. Appl. Algebra Eng. Commun. Comput. 20(3–4), 261–338 (2009). Scholar
  20. 20.
    Seiler, W.M.: Involution. The Formal Theory of Differential Equations and Its Applications in Computer Algebra. Springer, Berlin (2001). Scholar
  21. 21.
    Wall, B.: On the computation of syzygies. SIGSAM Bull. 23(4), 5–14 (1989)CrossRefGoogle Scholar
  22. 22.
    Zharkov, A., Blinkov, Y.: Involution approach to investigating polynomial systems. Math. Comput. Simul. 42(4), 323–332 (1996). Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesIsfahan University of TechnologyIsfahanIran
  2. 2.School of MathematicsInstitute for Research in Fundamental Sciences (IPM)TehranIran
  3. 3.Institut für MathematikUniversität KasselKasselGermany

Personalised recommendations