Skip to main content

A Theory and an Algorithm for Computing Sparse Multivariate Polynomial Remainder Sequence

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11077))

Abstract

This paper presents an algorithm for computing the polynomial remainder sequence (PRS) and corresponding cofactor sequences of sparse multivariate polynomials over a number field \({\mathbb K}\). Most conventional algorithms for computing PRSs are based on the pseudo remainder (Prem), and the celebrated subresultant theory for the PRS has been constructed on the Prem. The Prem is uneconomical for computing PRSs of sparse polynomials. Hence, in this paper, the concept of sparse pseudo remainder (spsPrem) is defined. No subresultant-like theory has been developed so far for the PRS based on spsPrem. Therefore, we develop a matrix theory for spsPrem-based PRSs. The computational formula for PRS, regardless of whether it is based on Prem or spsPrem, causes a considerable intermediate expression growth. Hence, we next propose a technique to suppress the expression growth largely. The technique utilizes the power-series arithmetic but no Hensel lifting. Simple experiments show that our technique suppresses the intermediate expression growth fairly well, if the sub-variable ordering is set suitably.

Work supported by Japan Society for Promotion of Science KAKENHI Grant number 15K00005.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brown, W.S.: On Euclid’s algorithm and the computation of polynomial greatest common divisors. JACM 18(4), 478–504 (1971)

    Article  MathSciNet  Google Scholar 

  2. Brown, W.S., Traub, J.F.: On Euclid’s algorithm and the theory of subresultants. JACM 18(4), 505–515 (1971)

    Article  MathSciNet  Google Scholar 

  3. Brown, W.S.: The subresultant PRS algorithm. ACM TOMS 4, 237–249 (1978)

    Article  MathSciNet  Google Scholar 

  4. Collins, G.E.: Polynomial remainder sequences and determinants. Am. Math. Mon. 71, 708–712 (1966)

    Article  MathSciNet  Google Scholar 

  5. Collins, G.E.: Subresultants and reduced polynomial remainder sequences. JACM 14, 128–142 (1967)

    Article  MathSciNet  Google Scholar 

  6. Ducos, L.: Optimizations of the subresultant algorithm. J. Pure Appl. Algebra 145, 149–163 (2000)

    Article  MathSciNet  Google Scholar 

  7. Habicht, W.: Zur inhomogenen Eliminationstheorie. Comm. Math. Helvetici 21, 79–98 (1948)

    Article  MathSciNet  Google Scholar 

  8. Hearn, A.C.: Non-modular computation of polynomial GCDS using trial division. In: Ng, E.W. (ed.) Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 227–239. Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09519-5_74

    Chapter  Google Scholar 

  9. Loos, R.: Generalized polynomial remainder sequence. In: Buchberger, B., Collins, G.E., Loos, R. (eds.) Computer Algebra. Computing Supplementum, vol. 4, pp. 115–137. Springer, Vienna (1982). https://doi.org/10.1007/978-3-7091-3406-1_9

    Chapter  Google Scholar 

  10. Sasaki, T.: A subresultant-like theory for Buchberger’s procedure. JJIAM (Jap. J. Indust. Appl. Math.) 31, 137–164 (2014)

    Article  MathSciNet  Google Scholar 

  11. Sasaki, T., Furukawa, A.: Theory of multiple polynomial remainder sequence. Publ. RIMS (Kyoto Univ.) 20, 367–399 (1984)

    Article  MathSciNet  Google Scholar 

  12. Sasaki, T., Inaba, D.: Simple relation between the lowest-order element of ideal \(\langle G, H \rangle \) and the last element of polynomial remainder sequence. In: Proceedings of SYNASC 2017 (Symbolic and Numeric Algorithms for Scientific Computing), IEEE Computer Society (2017, in printing)

    Google Scholar 

  13. Sasaki, T., Suzuki, M.: Three new algorithms for multivariate polynomial GCD. J. Symb. Comput. 13, 395–411 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tateaki Sasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sasaki, T. (2018). A Theory and an Algorithm for Computing Sparse Multivariate Polynomial Remainder Sequence. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2018. Lecture Notes in Computer Science(), vol 11077. Springer, Cham. https://doi.org/10.1007/978-3-319-99639-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99639-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99638-7

  • Online ISBN: 978-3-319-99639-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics