Advertisement

Finding Multiple Solutions in Nonlinear Integer Programming with Algebraic Test-Sets

  • M. I. HartilloEmail author
  • J. M. Jiménez-CobanoEmail author
  • J. M. UchaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11077)

Abstract

We explain how to compute all the solutions of a nonlinear integer problem using the algebraic test-sets associated to a suitable linear subproblem. These test-sets are obtained using Gröbner bases. The main advantage of this method, compared to other available alternatives, is its exactness within a quite good efficiency.

References

  1. 1.
    Sahinidis, N. V.: BARON 14.4.0: Global Optimization of Mixed-Integer Nonlinear Programs. User’s Manual (2014)Google Scholar
  2. 2.
    Bertsimas, D., Perakis, G., Tayur, S.: A new algebraic geometry algorithm for integer programming. Manag. Sci. 46(7), 999–1008 (2000)CrossRefGoogle Scholar
  3. 3.
    Castro, F.J., Gago, J., Hartillo, I., Puerto, J., Ucha, J.M.: An algebraic approach to integer portfolio problems. Eur. J. Oper. Res. 210(3), 647–659 (2011)CrossRefGoogle Scholar
  4. 4.
    Conti, P., Traverso, C.: Buchberger algorithm and integer programming. In: Mattson, H.F., Mora, T., Rao, T.R.N. (eds.) AAECC 1991. LNCS, vol. 539, pp. 130–139. Springer, Heidelberg (1991).  https://doi.org/10.1007/3-540-54522-0_102CrossRefzbMATHGoogle Scholar
  5. 5.
    Corazza, M., Favaretto, D.: On the existence of solutions to the quadratic mixed-integer mean-variance portfolio selection problem. Eur. J. Oper. Res. 176, 1947–1960 (2007)CrossRefGoogle Scholar
  6. 6.
    Belotti, P.: COUENNE: a user’s manual. Department of Mathematics Sciences, Clemson University. https://www.coin-or.org/Couenne/
  7. 7.
    Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics, vol. 185, 2nd edn. Springer, Hiedelberg (2005).  https://doi.org/10.1007/978-1-4757-6911-1CrossRefzbMATHGoogle Scholar
  8. 8.
    Djerdjour, M., Rekab, K.: A branch and bound algorithm for designing reliable systems at a minimum cost. Appl. Math. Comput. 118, 247–59 (2001)MathSciNetzbMATHGoogle Scholar
  9. 9.
    4ti2 team: 4ti2 - a software package for algebraic, geometric and combinatorial problems on linear spaces (2013). https://www.4ti2.de
  10. 10.
    Gago, J., Hartillo, I., Puerto, J., Ucha, J.M.: Exact cost minimization of a series-parallel reliable system with multiple component choices using an algebraic method. Comput. Oper. Res. 40(11), 2752–2759 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Leão, A.A.S., Cherri, L.H., Arenales, M.N.: Determining the K-best solutions of knapsack problems. Comput. Oper. Res. 49, 71–82 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Markowitz, H.: Portfolio selection. J. Finance 7, 77–91 (1952)Google Scholar
  13. 13.
    Ruan, N., Sun, X.L.: An exact algorithm for cost minimization in series reliability systems with multiple component choices. Appl. Math. Comput. 181, 732–41 (2006)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Tayur, S.R., Thomas, R.R., Natraj, N.R.: An algebraic geometry algorithm for scheduling in presence of setups and correlated demands. Math. Program. Ser. A 69(3), 369–401 (1995).  https://doi.org/10.1007/BF01585566CrossRefzbMATHGoogle Scholar
  15. 15.
    Tsai, J.-F., Lin, M.-H., Hu, Y.-C.: Finding multiple solutions to general integer linear programs. Eur. J. Oper. Res. 184(2), 802–809 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Li, H.-L., Tsai, J.-F.: A distributed computation algorithm for solving portfolio problems with integer variables. Eur. J. Oper. Res. 186(2), 882–891 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Departamento de Matemática Aplicada I.Universidad de SevillaSevillaSpain
  2. 2.Insituto de Matemáticas de la Universidad de Sevilla Antonio de Castro Brzezicki, Universidad de SevillaSevillaSpain

Personalised recommendations