Advertisement

Symbolic-Numeric Simulation of Satellite Dynamics with Aerodynamic Attitude Control System

  • Sergey A. GutnikEmail author
  • Vasily A. Sarychev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11077)

Abstract

The dynamics of the rotational motion of a satellite, subjected to the action of gravitational, aerodynamic and damping torques in a circular orbit is investigated. Our approach combines methods of symbolic study of the nonlinear algebraic system that determines equilibrium orientations of a satellite under the action of the external torques and numerical integration of the system of linear ordinary differential equations describing the dynamics of the satellite. An algorithm for the construction of a Gröbner basis was implemented for determining the equilibria of the satellite for specified values of the aerodynamic torque, damping coefficients, and principal central moments of inertia. Both the conditions of the satellite’s equilibria existence and the conditions of asymptotic stability of these equilibria were obtained. The transition decay processes of the spatial oscillations of the satellite for various system parameters have also been studied.

Notes

Acknowledgments

The authors thank the reviewers for very useful remarks and suggestions.

References

  1. 1.
    Beletsky, V.V.: Attitude Motion of Satellite in Gravitational Field. MGU Press, Moscow (1975)Google Scholar
  2. 2.
    Sarychev, V.A.: Problems of orientation of satellites, Itogi Nauki i Tekhniki. Ser. Space Research, vol. 11. VINITI, Moscow (1978)Google Scholar
  3. 3.
    Likins, P.W., Roberson, R.E.: Uniqueness of equilibrium attitudes for earth-pointing satellites. J. Astronaut. Sci. 13(2), 87–88 (1966)Google Scholar
  4. 4.
    Gutnik, S.A.: Symbolic-numeric investigation of the aerodynamic forces influence on satellite dynamics. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 192–199. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23568-9_15CrossRefGoogle Scholar
  5. 5.
    Sarychev, V.A., Gutnik, S.A.: Dynamics of a satellite subject to gravitational and aerodynamic torques. Investigation of equilibrium positions. Cosm. Res. 53, 449–457 (2015)CrossRefGoogle Scholar
  6. 6.
    Sarychev, V.A., Gutnik, S.A.: Satellite dynamics under the influence of gravitational and aerodynamic torques. A study of stability of equilibrium positions. Cosm. Res. 54, 388–398 (2016)CrossRefGoogle Scholar
  7. 7.
    Sarychev, V.A., Mirer, S.A.: Relative equilibria of a satellite subjected to gravitational and aerodynamic torques. Cel. Mech. Dyn. Astron. 76(1), 55–68 (2000)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Sarychev, V.A., Mirer, S.A., Degtyarev, A.A.: Equilibria of a satellite subjected to gravitational and aerodynamic torques with pressure center in a principal plane of inertia. Cel. Mech. Dyn. Astron. 100, 301–318 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Sarychev, V.A., Gutnik, S.A.: Dynamics of an axisymmetric satellite under the action of gravitational and aerodynamic torques. Cosm. Res. 50, 367–375 (2012)CrossRefGoogle Scholar
  10. 10.
    Gutnik, S.A., Sarychev, V.A.: A symbolic investigation of the influence of aerodynamic forces on satellite equilibria. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2016. LNCS, vol. 9890, pp. 243–254. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45641-6_16CrossRefGoogle Scholar
  11. 11.
    Sarychev, V.A., Sadov, Yu.A.: Analysis of a satellite dynamics with an gyro-damping orientation system. In: Obukhov, A.M., Kovtunenko, V.M. (eds.) Space Arrow. Optical Investigations of an Atmosphere, Nauka, Moscow, pp. 71–88 (1974)Google Scholar
  12. 12.
    Gutnik, S.A., Sarychev, V.A.: A symbolic study of the satellite dynamics subject to damping torques. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 167–182. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66320-3_13CrossRefGoogle Scholar
  13. 13.
    Buchberger, B.: A theoretical basis for the reduction of polynomials to canonical forms. SIGSAM Bull. 10(3), 19–29 (1976)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Char, B.W., Geddes, K.O., Gonnet, G.H., Monagan, M.B., Watt, S.M.: Maple Reference Manual. Watcom Publications Limited, Waterloo (1992)zbMATHGoogle Scholar
  15. 15.
    Weispfenning, V.: Comprehensive Gröbner bases. J. Symb. Comp. 14(1), 1–30 (1992)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lazard, D., Rouillier, F.: Solving parametric polynomial systems. J. Symb. Comp. 42(6), 636–667 (1992)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Chen, C., Maza, M.M.: Semi-algebraic description of the equilibria of dynamical systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 101–125. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23568-9_9CrossRefGoogle Scholar
  18. 18.
    Chen, C., Golubitsky, O., Lemaire, F., Maza, M.M., Pan, W.: Comprehensive triangular decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75187-8_7CrossRefGoogle Scholar
  19. 19.
    Meiman, N.N.: Some problems on the distribution of the zeros of polynomials. Uspekhi Mat. Nauk 34, 154–188 (1949)MathSciNetGoogle Scholar
  20. 20.
    Gantmacher, F.R.: The Theory of Matrices. Chelsea Publishing Company, New York (1959)zbMATHGoogle Scholar
  21. 21.
    England, M., Errami, H., Grigoriev, D., Radulescu, O., Sturm, T., Weber, A.: Symbolic versus numerical computation and visualization of parameter regions for multistationarity of biological networks. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 93–108. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66320-3_8CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Moscow State Institute of International Relations (University)MoscowRussia
  2. 2.Keldysh Institute of Applied Mathematics (Russian Academy of Sciences)MoscowRussia

Personalised recommendations