Advertisement

About Some Drinfel’d Associators

  • G. H. E. DuchampEmail author
  • V. Hoang Ngoc Minh
  • K. A. Penson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11077)

Abstract

We study, by means of a fragment of theory about noncommutative differential equations, existence and unicity of Drinfel’d solutions \(G_i,i=0,1\) (with asymptotic conditions). From there, we give examples of Drinfel’d series with rational coefficients.

Keywords

Drinfel’d series Harmonic sums Knizhnik-Zamolodchikov equations polylogarithms Polyzetas Regularization Renormalization Noncommutative differential equations Noncommutative generating series 

References

  1. 1.
    Bui, V.C., Duchamp, G.H.E., Hoang Ngoc Minh, V.: Structure of polyzetas and explicit representation on transcendence bases of shuffle and stuffle algebras. J. Sym. Comput. (2016)Google Scholar
  2. 2.
    Bui, V.C., Duchamp, G.H.E., Hoan Ngô, Q., Hoang Ngoc Minh, V., Tollu, C.: (Pure) Transcendence Bases in -Deformed Shuffle Bialgebras, Séminaire Lotharingien de Combinatoire, B74f (2018). 22 ppGoogle Scholar
  3. 3.
    Costermans, C., Minh, H.N.: Some results à la Abel obtained by use of techniques à la Hopf. In: Workshop on Global Integrability of Field Theories and Applications, Daresbury, UK, 1–3 November 2006Google Scholar
  4. 4.
    Costermans, C., Minh, H.N.: Noncommutative algebra, multiple harmonic sums and applications in discrete probability. J. Sym. Comput. 801–817 (2009)Google Scholar
  5. 5.
    Deligne, P.: Equations Différentielles à Points Singuliers Réguliers. Lecture Notes in Mathematics, vol. 163. Springer, Heidelberg (1970)Google Scholar
  6. 6.
    Deneufchâtel, M., Duchamp, G.H.E., Hoang Ngoc Minh, V., Solomon, A.I.: Independence of hyperlogarithms over function fields via algebraic combinatorics. In: Winkler, F. (ed.) CAI 2011. LNCS, vol. 6742, pp. 127–139. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21493-6_8CrossRefzbMATHGoogle Scholar
  7. 7.
    Duchamp, G.H.E., Minh, H.N., Ngo, Q.H.: Harmonic sums and polylogarithms at negative multi-indices. J. Sym. Comput. (2016)Google Scholar
  8. 8.
    Duchamp, G.H.E., Minh, H.N., Ngo, Q.H.: Double regularization of polyzetas at negative multiindices and rational extensions (en préparation)Google Scholar
  9. 9.
    Duchamp, G.H.E., Hoang Ngoc Minh, V., Ngo, Q.H., Penson, K.A., Simonnet, P.: Mathematical renormalization in quantum electrodynamics via noncommutative generating series. In: Kotsireas, I., Martínez-Moro, E. (eds.) ACA 2015. Springer Proceedings in Mathematics & Statistics, vol. 198, pp. 59–100. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-319-56932-1_6
  10. 10.
    Duchamp, G.H.E., Minh, H.N., Penson, K.: On Drinfel’d associators. arXiv:1705.01882 (2017)
  11. 11.
    Drinfel’d, V.: Quantum group. In: Proceedings of International Congress of Mathematicians, Berkeley (1986)Google Scholar
  12. 12.
    Drinfel’d, V.: Quasi-Hopf algebras. Len. Math. J. 1, 1419–1457 (1990)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Drinfel’d, V.: On quasitriangular quasi-Hopf algebra and a group closely connected with \({\rm gal}({\bar{\mathbb{Q}}}{/}{{\mathbb{Q}}})\). Len. Math. J. 4, 829–860 (1991)Google Scholar
  14. 14.
    Écalle, J.: L’équation du pont et la classification analytique des objets locaux, In: Les fonctions résurgentes, 3, Publications de l’Université de Paris-Sud, Département de Mathématique (1985)Google Scholar
  15. 15.
    Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press, New York (1974)zbMATHGoogle Scholar
  16. 16.
    Jacob, G., Reutenauer, C. (eds.) The 1st International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC 1988, University of Lille, France, December 1988Google Scholar
  17. 17.
    Flajolet, P., Odlyzko, A.: Singularity analysis of generating functions. SIAM J. Discrete Math. 3(2), 216–240 (1982)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Minh, H.N.: Summations of polylogarithms via evaluation transform. Math. Comput. Simul. 1336, 707–728 (1996)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Minh, H.N., Jacob, G.: Symbolic integration of meromorphic differential equation via Dirichlet functions. Discrete Math. 210, 87–116 (2000)Google Scholar
  20. 20.
    Minh, H.N., Jacob, G., Oussous, N.E., Petitot, M.: De l’algèbre des \(\zeta \) de Riemann multivariées à l’algèbre des \(\zeta \) de Hurwitz multivariées. J. électronique du Séminaire Lotharingien de Combinatoire 44 (2001)Google Scholar
  21. 21.
    Minh, H.N., Petitot, M.: Lyndon words, polylogarithmic functions and the Riemann \(\zeta \) function. Discrete Math. 217, 273–292 (2000)Google Scholar
  22. 22.
    Hoang Ngoc Minh, V.: On a conjecture by Pierre Cartier about a group of associators. Acta Math. Vietnamica 38(3), 339–398 (2013)Google Scholar
  23. 23.
    Minh, H.N.: Structure of polyzetas and Lyndon words. Vietnamese Math. J. 41(4), 409–450 (2013)Google Scholar
  24. 24.
    Minh, H.N.: On solutions of \(KZ_3\) (to appear)Google Scholar
  25. 25.
    Lappo-Danilevsky, J.A.: Théorie des systèmes des équations différentielles linéaires. Chelsea, New York (1953)zbMATHGoogle Scholar
  26. 26.
    Lê, T.Q.T., Murakami, J.: Kontsevich’s integral for Kauffman polynomial. Nagoya Math. J. 39–65 (1996)Google Scholar
  27. 27.
    Reutenauer, C.: Free Lie Algebras. London Mathematical Society Monographs (1993)Google Scholar
  28. 28.
    Zagier, D.: Values of zeta functions and their applications. In: Joseph, A., Mignot, F., Murat, F., Prum, B., Rentschler, R. (eds.) First European Congress of Mathematics, vol. 120, pp. 497–512. Birkhäuser, Basel (1994).  https://doi.org/10.1007/978-3-0348-9112-7_23

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • G. H. E. Duchamp
    • 1
    Email author
  • V. Hoang Ngoc Minh
    • 2
  • K. A. Penson
    • 3
  1. 1.Sorbonne Université, Université Paris XIIIVilletaneuseFrance
  2. 2.Université LilleLilleFrance
  3. 3.Sorbonne Université, Université Paris VIParis Cedex 05France

Personalised recommendations