Advertisement

Heterogeneity, Price Discovery and Inequality in an Agent-Based Scarf Economy

  • Shu-Heng Chen
  • Bin-Tzong Chie
  • Ying-Fang Kao
  • Wolfgang Magerl
  • Ragupathy Venkatachalam
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

In this chapter, we develop an agent-based Scarf economy with heterogeneous agents, who have private prices and adaptively learn from their own experiences and those of others through a meta-learning model. We study the factors affecting the efficacy of price discovery and coordination to the Walrasian Equilibrium. We also find that payoff inequality emerges endogenously over time among the agents and this is traced back to intensity of choice (a behavioural parameter) and the associated strategy choices. Agents with high intensities of choice suffer lower payoffs if they do not explore and learn from other agents.

Keywords

Non-tâtonnement processes Coordination Learning Agent-based modeling Walrasian general equilibrium Heterogeneous agents 

Notes

Acknowledgements

Shu-Heng Chen and Ragupathy Venkatachalam are grateful for the research support provided in the form of the Ministry of Science and Technology (MOST) grants, MOST 103-2410-H-004-009-MY3 and MOST 104-2811-H-004-003, respectively.

References

  1. 1.
    Alós-Ferrer, C., & Schlag, K. H. (2009). Imitation and learning. In P. Anand, P. Pattanaik and C. Puppe (Eds.), The handbook of rational and social choice. New York: Oxford University Press.Google Scholar
  2. 2.
    Anderson, C., Plott, C., Shimomura, K., & Granat, S. (2004). Global instability in experimental general equilibrium: The Scarf example. Journal of Economic Theory, 115(2), 209–249.CrossRefGoogle Scholar
  3. 3.
    Arifovic, J., & Ledyard, J. (2004). Scaling up learning models in public good games. Journal of Public Economic Theory, 6, 203–238.CrossRefGoogle Scholar
  4. 4.
    Arthur, B. (1993) On designing economic agents that behave like human agents. Journal of Evolutionary Economics 3(1), 1–22.CrossRefGoogle Scholar
  5. 5.
    Bossan, B., Jann, O., & Hammerstein, P. (2015). The evolution of social learning and its economic consequences. Journal of Economic Behavior & Organization, 112, 266–288.CrossRefGoogle Scholar
  6. 6.
    Erev, I., & Rapoport, A. (1998). Coordination, “magic,” and reinforcement learning in a market entry game. Games and Economic Behavior, 23, 146–175.CrossRefGoogle Scholar
  7. 7.
    Erev, I., & Roth, A. (1998). Predicting how people play games: Reinforcement learning in experimental games with unique, mixed strategy equilibria. American Economic Review, 88(4), 848–881.Google Scholar
  8. 8.
    Fisher, F. M. (1983). Disequilibrium foundation of equilibrium economics. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  9. 9.
    Gintis, H. (2007). The dynamics of general equilibrium. Economic Journal, 117(523), 1280–1309.CrossRefGoogle Scholar
  10. 10.
    Hahn, F. H., & Negishi, T. (1962). A theorem on non-tâtonnement stability. Econometrica, 30(3), 463–469.CrossRefGoogle Scholar
  11. 11.
    Hoppitt, W., & Laland, K. N. (2008). Social processes influencing learning in animals: A review of the evidence. Advances in the Study of Behavior, 38, 105–165.CrossRefGoogle Scholar
  12. 12.
    Hopkins, E., & Kornienko, T. (2010). Which inequality? The inequality of endowments versus the inequality of rewards. American Economic Journal: Microeconomics, 2(3), 106–37.Google Scholar
  13. 13.
    Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–291.CrossRefGoogle Scholar
  14. 14.
    Laland, K. (2004). Social learning strategies. Animal Learning & Behavior, 32(1), 4–14.CrossRefGoogle Scholar
  15. 15.
    Matsuyama, K. (2004). Financial market globalization, symmetry-breaking, and endogenous inequality of nations. Econometrica, 72(3), 853–884.CrossRefGoogle Scholar
  16. 16.
    Piketty, T. (2000), Theories of persistent inequality and intergenerational mobility. Chapter 8, Handbook of Income Distribution (vol. 1, pp. 429–476). Amsterdam: Elsevier.Google Scholar
  17. 17.
    Piketty, T. (2014), Capital in the Twenty-First Century. Cambridge: Harvard University Press.CrossRefGoogle Scholar
  18. 18.
    Rendell, L., Boyd, R., Cownden, D., Enquist, M., Eriksson, K., Feldman, M. W., et al. (2010). Why copy others? Insights from the social learning strategies tournament. Science, 328(5975), 208–213.CrossRefGoogle Scholar
  19. 19.
    Roth, A., & Erev, I. (1995). Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term. Games and Economic Behaviour, 8, 164–212.CrossRefGoogle Scholar
  20. 20.
    Scarf, H. (1960). Some examples of global instability of the competitive economy. International Economic Review, 1(3), 157–172.CrossRefGoogle Scholar
  21. 21.
    Schlag, K. (1998). Why imitate, and if so, how? A boundedly rational approach to multi-armed bandits. Journal of Economic Theory, 78(1), 130–156.CrossRefGoogle Scholar
  22. 22.
    Schlag, K. (1999). Which one should I imitate? Journal of Mathematical Economics, 31(4), 493–522.CrossRefGoogle Scholar
  23. 23.
    Sutton, R., & Barto, A. (1998). Reinforcement learning: An introduction, Cambridge, MA: MIT Press.Google Scholar
  24. 24.
    Tversky, A., & Kahneman, D. (1991). Loss aversion in riskless choice: A reference-dependent model. Quarterly Journal of Economics, 106, 1039–1061.CrossRefGoogle Scholar
  25. 25.
    Uzawa, H. (1960). Walras’ tâtonnement in the theory of exchange. The Review of Economic Studies, 27(3), 182–194.CrossRefGoogle Scholar
  26. 26.
    Vriend, N. (2000). An illustration of the essential difference between individual and social learning, and its consequences for computational analyses. Journal of Economic Dynamics & Control, 24(1), 1–19.CrossRefGoogle Scholar
  27. 27.
    Wiering, M., & van Otterlo, M. (2012). Reinforcement learning: State of the art. Heidelberg: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Shu-Heng Chen
    • 1
  • Bin-Tzong Chie
    • 2
  • Ying-Fang Kao
    • 1
  • Wolfgang Magerl
    • 1
    • 3
  • Ragupathy Venkatachalam
    • 4
  1. 1.AI-ECON Research Center, Department of EconomicsNational Chengchi UniversityTaipeiTaiwan
  2. 2.Tamkang UniversityTamsui, TaipeiTaiwan
  3. 3.Vienna University of TechnologyViennaAustria
  4. 4.Institute of Management Studies, GoldsmithsUniversity of LondonLondonUK

Personalised recommendations