Skip to main content

Is Risk Quantifiable?

  • Conference paper
  • First Online:
Complex Systems Modeling and Simulation in Economics and Finance (CEF 2015)

Part of the book series: Springer Proceedings in Complexity ((SPCOM))

Included in the following conference series:

  • 677 Accesses

Abstract

The work of Gödel and Turing, among others, shows that there are fundamental limits to the possibility of formal quantification of natural and social phenomena . Both our knowledge and our ignorance are, to a large extent, not amenable to quantification. Disregard of these limits in the economic sphere might lead to underestimation of risk and, consequently, to excessive risk-taking. If so, this would expose markets to undue instability and turbulence. One major lesson of the Global Financial Crisis , therefore, is to reform economic methodology to expand beyond formal reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    But see Sect. 3 below.

  2. 2.

    We will later elaborate on that characterization.

  3. 3.

    We use here “model” in the sense of “mathematical model”, that is, the mathematical depiction of some phenomenon; we do not use it in the model-theoretic sense.

  4. 4.

    That is, the set of theorems of S is recursively enumerable.

  5. 5.

    This is what we mean by “enough arithmetic”. Actually we can obtain the same results we require if we add a still weaker arithmetic condition.

  6. 6.

    The theorem that implies such a result is a Rice-like theorem proved by da Costa and Doria in theorem 1990; see Chaitin et al. [28].

  7. 7.

    A simple proof can be found in Chaitin et al. [28].

  8. 8.

    Yet the Arrow–Debreu theory is undecidable; that follows from a theorem by Tsuji et al. [107].

  9. 9.

    For a summary discussion, see http://http://www.fattails.ca.

  10. 10.

    Personal communication to FAD.

  11. 11.

    In binary form, zeros and ones are evenly distributed.

  12. 12.

    Actually an injunction engraved at the Apollonic oracle at Delphos.

  13. 13.

    Yet one must be careful here, as the so-called “reflection principles” may be interpreted as sentences of the form “X is true”.

References

  1. Al-Suwailem, S. (2010). Behavioural complexity. Journal of Economic Surveys, 25, 481–506.

    Article  Google Scholar 

  2. Al-Suwailem, S. (2014). Complexity and endogenous instability. Research in International Business and Finance, 30, 393–410.

    Article  Google Scholar 

  3. Arrow, K., & Debreu, G. (1954). The existence of an equilibrium for a competitive economy. Econometrica, 22, 265–89.

    Article  Google Scholar 

  4. Barrow, J. (1998). Impossibility: The limits of science and the science of limits. Oxford: Oxford University Press.

    Google Scholar 

  5. Barwise, J. (1989). The situation in logic. Stanford, CA: Center for the Study of Language and Information.

    Google Scholar 

  6. Barwise, J., & Moss, L. (1996). Vicious circles. Stanford, CA: Center for the Study of Language and Information.

    Google Scholar 

  7. Bays, T. (2014). Skolem’s paradox. In E. Zalta (Ed.), Stanford Encyclopedia of Philosophy. Stanford, CA: Stanford University, https://plato.stanford.edu/.

    Google Scholar 

  8. Bergstra, J. A., & Middelburg, C. A. (2011). Preliminaries to an investigation of reduced product set finance. Journal of King Abdulaziz University: Islamic Economics, 24, 175–210.

    Google Scholar 

  9. Bernstein, P. (1996). Against the Gods: The remarkable story of risk. New York: Wiley.

    Google Scholar 

  10. Bernstein, P. (2007). Capital ideas evolving. New York: Wiley.

    Google Scholar 

  11. Bernstein, P. (2007). Capital ideas: Past, present, and future. In Lecture delivered at CFA Institute Annual Conference.

    Google Scholar 

  12. Berto, F. (2009). There’s something about Gödel: The complete guide to the incompleteness theorem. Hoboken: Wiley-Blackwell.

    Book  Google Scholar 

  13. Blaug, M. (1992). The methodology of economics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  14. Blaug, M. (1999). The disease of formalism, or what happened to neoclassical economics after war. In R. Backhouse & J. Creedy (Eds.), From classical economics to the theory of the firm (pp. 257–80). Northampton, MA: Edward Elgar.

    Google Scholar 

  15. Blaug, M. (2002). Is there really progress in economics? In S. Boehm, C. Gehrke, H. Kurz, & R. Sturm (Eds.), Is there progress in economics? European Society for the History of Economic Thought (pp. 21–41). Northampton, MA: Edward Elgar.

    Google Scholar 

  16. Blythe, S. (2007). Risk is not a number. http://www.advisor.ca/investments/alternative-investments/risk-is-not-a-number-26881.

    Google Scholar 

  17. Bookstaber, R. (2007). A demon of our own design. New York: Wiley.

    Google Scholar 

  18. Bookstaber, R., & Langsam, J. (1985). On the optimality of coarse behavior rules. Journal of Theoretical Biology, 116, 161–193.

    Article  Google Scholar 

  19. Bolander, T. (2002). Self-reference and logic. Φ News, 1, 9–44. http://phinews.ruc.dk/.

  20. Bolander, T. (2014). Self-reference. In E. Zalta (Ed.), Stanford Encyclopedia of Philosophy. Stanford, CA: Stanford University, https://plato.stanford.edu/.

    Google Scholar 

  21. Bordo, M., Eichengreen, B., Klingebiel, D., & Martinez-Peria, M. S. (2001). Is the crisis problem growing more severe? Economic Policy, 32, 53–82.

    Google Scholar 

  22. Bouchaud, J. P. (2008). Economics needs a scientific revolution. Nature, 455, 1181.

    Article  Google Scholar 

  23. Breit, W., & Hirsch, B. (Eds.). (2009). Lives of the laureates (5th ed.). Cambridge, MA: MIT Press.

    Google Scholar 

  24. Byers, W. (2007) How mathematicians think: Using ambiguity, contradiction, and paradox to create mathematics. Princeton: Princeton University Press.

    Google Scholar 

  25. Byers, W. (2011). The blind spot: Science and the crisis of uncertainty. Princeton: Princeton University Press.

    Book  Google Scholar 

  26. Calude, C., Jurgensen, H., & Zimand, M. (1994). Is independence an exception? Applied Mathematical Computing, 66, 63–76.

    Google Scholar 

  27. Cassidy, J. (2009). How markets fail: The logic of economic calamities. New York: Farrar, Straus, and Giroux.

    Google Scholar 

  28. Chaitin, G., Doria, F. A., & da Costa, N. C. A. (2011). Gödel’s way: Exploits into an undecidable world. Boca Raton, FL: CRC Press.

    Google Scholar 

  29. Chrystal, K. A., & Mizen, P. D. (2003). Goodhart’s law: Its origins, meaning and implications for monetary policy. In P. Mizen (Ed.), Central banking, monetary theory and practice: Essays in honour of Charles Goodhart (Vol. 1). Northampton, MA: Edward Elgar.

    Google Scholar 

  30. Clower, R. (1995). Axiomatics in economics. Southern Economic Journal, 62, 307–319.

    Article  Google Scholar 

  31. Colander, D., Goldberg, M., Haas, A., Juselius, K., Kirman, A., Lux, T., & Sloth, B. (2009). The financial crisis and the systemic failure of the economics profession. Critical Review, 21, 249–67.

    Article  Google Scholar 

  32. Coleman, T. (2011). A practical guide to risk management. Charottesville, VA: CFA Institute.

    Google Scholar 

  33. Collins, H. (2010). Tacit and explicit knowledge. Chicago: University of Chicago Press.

    Book  Google Scholar 

  34. da Costa, N. C. A., & Doria, F. A. (1991). Undecidability and incompleteness in classical mechanics. International Journal of Theoretical Physics, 30, 1041–1073.

    Article  Google Scholar 

  35. da Costa, N. C. A., & Doria, F. A. (1992). On the incompleteness of axiomatized models for the empirical sciences. Philosophica, 50, 73–100.

    Google Scholar 

  36. da Costa, N. C. A., & Doria, F. A. (2005). Computing the future. In K. Velupillai (Ed.), Computability, Complexity and Constructivity in Economic Analysis. Malden, MA: Blackwell Publishers.

    Google Scholar 

  37. Davis, M. (2000). Engines of logic. New York: W.W. Norton.

    Google Scholar 

  38. DeLong, H. (1970). A profile of mathematical logic. Reading, MA: Addison-Wesley.

    Google Scholar 

  39. Dyson, F. (2006). The scientist as rebel. New York: New York Review Books.

    Google Scholar 

  40. Erickson, J. (2015). Models of computation. University of Illinois, Urbana-Champaign. http://jeffe.cs.illinois.edu

    Google Scholar 

  41. Etzioni, A. (1988). The moral dimension: Toward a new economics. New York: The Free Press.

    Google Scholar 

  42. Ferreirós, J. (2008). The crisis in the foundations in mathematics. In T. Gowers (Ed.), The Princeton companion to mathematics (pp. 142–156). Princeton: Princeton University Press.

    Google Scholar 

  43. Feyerabend, P. (2010). Against the method (4th ed.). London: Verso.

    Google Scholar 

  44. Filimonov, V., Bicchetti, D., Maystre, N., & Sornette, D. (2013). Quantification of the high level of endogeneity and of structural regime shifts in commodity markets. The Journal of International Money and Finance, 42, 174–192.

    Article  Google Scholar 

  45. Filimonov, V., & Sornette, D. (2012). Quantifying reflexivity in financial markets: Towards a prediction of flash crashes. Physical Review E, 85(5), 056108.

    Article  Google Scholar 

  46. Franzen, T. (2004). Inexhaustibility. Boca Raton: CRC Press.

    Google Scholar 

  47. Frydman, R., & Goldberg, M. (2007). Imperfect knowledge economics: Exchange rates and risk. Princeton: Princeton University Press.

    Google Scholar 

  48. Frydman, R., & Goldberg, M. (2011). Beyond mechanical markets: Asset price swings, risk, and the role of state. Princeton: Princeton University Press.

    Book  Google Scholar 

  49. FSA. (2009). The Turner review. London: Financial Services Authority.

    Google Scholar 

  50. Gleiser, M. (2014). The island of knowledge: The limits of science and the search for meaning. New York: Basic Books.

    Google Scholar 

  51. Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I (On formally undecidable propositions of Principia Mathematica and related systems I). Monatshefte für Mathematik und Physik, 38, 173–198.

    Article  Google Scholar 

  52. Gödel, K. (1947). What is Cantor’s continuum problem? American Mathematical Monthly, 54, 515–525.

    Article  Google Scholar 

  53. Gödel, K. (1995). Some basic theorems on the foundations of mathematics and their implications. In S. Feferman (Ed.), Kurt Gödel Collected Works, Volume III: Unpublished essays and lectures (pp. 304–323). Oxford: Oxford University Press.

    Google Scholar 

  54. Goleman, D. (2006). Social intelligence. New York: Bantam Books.

    Google Scholar 

  55. Gray, J. (2008). Thoralf Skolem. In T. Gowers (Ed.), The Princeton companion to mathematics (pp. 806–807). Princeton: Princeton University Press.

    Google Scholar 

  56. Harcourt, G. (2003). A good servant but a bad master. In E. Fullbrook (Ed.), The crisis in economics. London: Routledge.

    Google Scholar 

  57. Hawking, S. (2002). Gödel and the end of the universe. www.hawking.org.uk.

    Google Scholar 

  58. Heiner, R. (1983). The origin of predictable behaviour. American Economic Review, 73, 560–595.

    Google Scholar 

  59. Keynes, J. M. (1936/1953). The general theory of employment, interest and money. San Diego: Harcourt Brace Jovanovich.

    Google Scholar 

  60. King, M. (2016). The end of alchemy. New York: W.W. Norton.

    Google Scholar 

  61. Kirman, A. (2012). The economy and the economic theory in crisis. In D. Coyle (Ed.), What’s the use of economics? Teaching the dismal science after the crisis. London: London Publishing Partnership.

    Google Scholar 

  62. Kline, M. (1980). Mathematics: The loss of certainty. Oxford: Oxford University Press.

    Google Scholar 

  63. Knight, F. (1921). Risk, uncertainty, and profit. New York: Houghton-Mifflin.

    Google Scholar 

  64. Kremer, P. (2014). The revision theory of truth. In E. Zalta (Ed.), Stanford Encyclopedia of Philosophy. Stanford, CA: Stanford University, https://plato.stanford.edu/.

    Google Scholar 

  65. Krugman, P. (2009, September 2). How did economists get it so wrong? New York Times.

    Google Scholar 

  66. Laplace, P. S. (1902/1951). A philosophical essay on probabilities. Translated into English from the original French 6th ed. by F.W. Truscott & F.L. Emory. New York: Dover Publications.

    Google Scholar 

  67. Lavoie, D. (1986). The market as a procedure for discovery and conveyance of inarticulate knowledge. Comparative Economic Studies, 28, 1–19.

    Google Scholar 

  68. Leonard, R. (1994). Money and language. In J. L. Di Gaetani (Ed.), Money: Lure, lore, and literature (pp. 3–13). London: Greenwood Press.

    Google Scholar 

  69. Lewis, H. (2013). Lecture notes. Harvard University, http://lewis.seas.harvard.edu/files/harrylewis/files/section8sols.pdf.

    Google Scholar 

  70. Lieberman, M. (2013). Social: Why our brains are wired to connect. New York: Crown Publishers.

    Google Scholar 

  71. Lloyd, S. (2006). Programming the universe. New York: Vintage Books.

    Google Scholar 

  72. Lloyd, S. (2013). A Turing test for free will. Cambridge, MA: MIT Press. http://arxiv.org/abs/1310.3225v1.

    Google Scholar 

  73. Machtey, M., & Young, P. (1979). An introduction to the general theory of algorithms. New York: North–Holland.

    Google Scholar 

  74. Mainelli, M., & Giffords, B. (2009). The road to long finance: A systems view of the credit scrunch. London: Centre for the Study of Financial Innovation. Heron, Dawson & Sawyer. www.csfi.org.uk.

    Google Scholar 

  75. Marks, R. (2013). Learning lessons? The global financial crisis five years on. Journal and Proceeding of the Royal Society of New South Wales, 146, 3–16, A1–A43.

    Google Scholar 

  76. McCauley, J. (2012). Equilibrium versus market efficiency: Randomness versus complexity in finance markets. In S. Zambelli & D. George (Eds.), Nonlinearity, complexity and randomness in economics (pp. 203–210). Malden, MA: Wiley-Blackwell.

    Chapter  Google Scholar 

  77. Mintzberg, H. (1994). The rise and fall of strategic planning. New York: The Free Press.

    Google Scholar 

  78. Mishkin, F. (2007). The economics of money, banking, and financial markets (Alternate edition). New York: Pearson.

    Google Scholar 

  79. Nocera, J. (2009, January 2). Risk mismanagement. The New York Times.

    Google Scholar 

  80. North, D. (1990). Institutions, institutional change and economic performance. Cambridge, MA: Cambridge University Press.

    Book  Google Scholar 

  81. Polanyi, M. (1966). The tacit dimension. New York: Doubleday.

    Google Scholar 

  82. Popper, K. (1956/1988). The open universe: An argument for indeterminism. London: Routledge.

    Google Scholar 

  83. Priest, G. (1994). The structure of the paradoxes of self-reference. Mind, 103, 25–34.

    Article  Google Scholar 

  84. Priest, G. (2000). Beyond the limits of thought (2nd ed.). Oxford: Oxford University Press.

    Google Scholar 

  85. Putnam, H. (1967). Psychophysical predicates. In W. Capitan & D. Merrill (Eds.), Art, mind, and religion. Pittsburgh: University of Pittsburgh Press.

    Google Scholar 

  86. Rajan, U., Seru, A., & Vig, V. (2015). The failure of models that predict failures: Distance, incentives, and defaults. Journal of Financial Economics, 115, 237–260.

    Article  Google Scholar 

  87. Reinhart, C., & Rogoff, K. (2009). This time is different: Eight centuries of financial folly. Princeton: Princeton University Press.

    Google Scholar 

  88. Rice, H. G. (1953). Classes of recursively enumerable sets and their decision problems. Transactions of the American Mathematical Society, 74, 358–366.

    Article  Google Scholar 

  89. Rogers, H., Jr. (1967). Theory of recursive functions and effective computability. New York: McGraw-Hill.

    Google Scholar 

  90. Rosser, J. B. (2001) Alternative Keynesian and post Keynesian perspectives on uncertainty and expectations. Journal of Post Keynesian Economics, 23, 545–66.

    Article  Google Scholar 

  91. Rubinstein, A. (1998). Modeling bounded rationality. Cambridge, MA: MIT Press.

    Google Scholar 

  92. Savin, N., & Whitman, C. (1992). Lucas critique. In P. Newman, M. Milgate, & J. Eatwell (Eds.), New Palgrave dictionary of money and finance. New York: Palgrave.

    Google Scholar 

  93. Shiller, R. (2009). Irrational exuberance. Princeton: Princeton University Press.

    Google Scholar 

  94. Simon, H. (1978). Rationality as process and as product of thought. American Economic Review, 68, 1–16.

    Google Scholar 

  95. Simon, H. (1978/1992). Rational decision-making in business organizations. In A. Lindbeck (Ed.), Nobel Lectures, Economics 1969–1980 (pp. 343–371). Singapore: World Scientific Publishing Co. https://www.nobelprize.org.

    Google Scholar 

  96. Soros, G. (2003). Alchemy of finance. Hoboken: Wiley.

    Google Scholar 

  97. Soros, G. (2009, October 26). The general theory of reflexivity. Financial Times.

    Google Scholar 

  98. Sornette, D. (2003). Why stock markets crash: Critical events in complex financial systems. Princeton: Princeton University Press.

    Google Scholar 

  99. Sornette, D., & Cauwels, P. (2012). The illusion of the perpetual money machine. Notenstein Academy White Paper Series. Zurich: Swiss Federal Institute of Technology. http://arxiv.org/pdf/1212.2833.pdf.

  100. Stewart, I. (1991). Deciding the undecidable. Nature, 352, 664–665.

    Article  Google Scholar 

  101. Stuart, T. (2013). Understanding computation. Beijing: O’Reilly.

    Google Scholar 

  102. Svozil, K. (1993). Randomness and undecidability in physics. Singapore: World Scientific.

    Book  Google Scholar 

  103. Svozil, K. (1996). Undecidability everywhere? In A. Karlqvist & J.L. Casti (Eds.), Boundaries and barriers: On the limits to scientific knowledge. Reading, MA: Addison-Wesley, pp. 215–237. http://arxiv.org/abs/chao-dyn/9509023v1.

    Google Scholar 

  104. Taleb, N. (2007). The black swan. New York: Random House.

    Google Scholar 

  105. Taleb, N. (2012). Antifragile. New York: Random House.

    Google Scholar 

  106. Trichet, J.-C. (2009). A paradigm change for the global financial system. BIS Review, 4/2009.

    Google Scholar 

  107. Tsuji, M., Da Costa, N. C. A., & Doria, F. A. (1998). The incompleteness of theories of games. Journal of Philosophical Logic, 27, 553–568.

    Article  Google Scholar 

  108. Tuckett, D. (2011). Minding the market: An emotional finance view of financial instability. Basingstoke: Palgrave MacMillan.

    Book  Google Scholar 

  109. Turing, A. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, Series, 2(42), 230–265.

    Google Scholar 

  110. Velupillai, K. V. (2000). Computable economics. Oxford: Oxford University Press.

    Book  Google Scholar 

  111. Velupillai, K. V. (2012). Introduction. In K. V. Velupillai et al. (Eds.), Computable economics. International Library of Critical Writings in Economics. Northampton, MA: Edward Elgar.

    Google Scholar 

  112. Velupillai, K. V., Zambelli, S., & Kinsella, S. (Eds.). (2012). Computable economics. International Library of Critical Writings in Economics. Northampton, MA: Edward Elgar.

    Google Scholar 

  113. Wiltbank, R., Dew, N., Read, S., & Sarasvathy, S. D. (2006). What to do next? A case for non-predictive strategy. Strategic Management Journal, 27, 981–998.

    Article  Google Scholar 

  114. Winrich, J. S. (1984). Self-reference and the incomplete structure of neoclassical economics. Journal of Economic Issues, 18, 987–1005.

    Article  Google Scholar 

  115. Wolpert, D. (2008). Physical limits of inference. Physica, 237, 1257–1281.

    Google Scholar 

  116. Yanofsky, N. (2003). A universal approach to self-referential paradoxes, incompleteness and fixed points. The Bulletin of Symbolic Logic, 9, 362–386.

    Article  Google Scholar 

  117. Yanofsky, N. (2013). The outer limits of reason: What science, mathematics, and logic cannot tell us. Cambridge, MA: MIT Press.

    Google Scholar 

Download references

Acknowledgements

We are grateful to the editors and an anonymous referee for constructive comments and suggestions that greatly improved the readability of this text. FAD: wishes to acknowledge research grant no. 4339819902073398 from CNPq/Brazil, and the support of the Production Engineering Program, coppe/UFRJ, Brazil. SA: wishes to acknowledge the valuable discussions with the co-authors, particularly FAD. The views expressed in this chapter do not necessarily represent the views of the Islamic Development Bank Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Al-Suwailem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Al-Suwailem, S., Doria, F.A., Kamel, M. (2018). Is Risk Quantifiable?. In: Chen, SH., Kao, YF., Venkatachalam, R., Du, YR. (eds) Complex Systems Modeling and Simulation in Economics and Finance. CEF 2015. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-99624-0_14

Download citation

Publish with us

Policies and ethics