Product Innovation and Macroeconomic Dynamics

  • Christophre GeorgesEmail author
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)


We develop an agent-based macroeconomic model in which product innovation is the fundamental driver of growth and business cycle fluctuations. The model builds on a hedonic approach to the product space and product innovation developed in Georges (A hedonic approach to product innovation for agent-based macroeconomic modeling, 2011).


Innovation Growth Business cycles Agent-based modeling Agent-based macroeconomics 



I am grateful to participants at CEF 2015 and a referee for useful comments, suggestions, and discussions. All errors are mine.


  1. 1.
    Acemoglu, D., Carvalho, V. M., Ozdaglar, A., & Tahbaz-Selehi, A. (2012). The network origins of aggregate fluctutations. Econometrica, 80(5), 1977–1016.CrossRefGoogle Scholar
  2. 2.
    Acemoglu, D., Akcigit, U., Bloom, N., & Kerr, W. R. (2013). Innovation, reallocation and growth. In NBER WP 18933.Google Scholar
  3. 3.
    Acemoglu, D., Akcigit, U., & Kerr, W. R. (2015). Networks and the macroeconomy: An empirical exploration. In NBER macroeconomic annual (Vol. 30).Google Scholar
  4. 4.
    Akcigit, U., & Kerr, W. R. (2018). Growth through heterogeneous innovations. Journal of Political Economy, 126(4), 1374–1443. Akcigit, U., & Kerr, W. R. (2018). Growth through heterogeneous innovations. Journal of Political Economy (Vol. 136) No.4CrossRefGoogle Scholar
  5. 5.
    Becker, G. S. (1965). A theory of the allocation of time. Economic Journal, 75(299), 493–517.CrossRefGoogle Scholar
  6. 6.
    Bernard, A. B., Redding, S. J., & Schott, P. K. (2010). Multi-product firms and product switching. American Economic Review, 100(1), 70–97.CrossRefGoogle Scholar
  7. 7.
    Broda, C., & Weinstein, D. E. (2010). Product creation and destruction: Evidence and price implications. American Economic Review, 100(3), 691–723.CrossRefGoogle Scholar
  8. 8.
    Brynjolfsson, E., Hu, Y., & Smith, M. D. (2010). The longer tail: The changing shape of Amazon’s sales distribution curve. Manuscript, MIT Sloan School.Google Scholar
  9. 9.
    Brynjolfsson, E., Hu, Y., & Simester, D. (2011). Goodbye Pareto principle, hello long tail: The effect of search costs on the concentration of product sales. Management Science, 57(8), 1373–1386.CrossRefGoogle Scholar
  10. 10.
    Carvalho, V. M., & Gabaix, X. (2013). The great diversification and its undoing. American Economic Review, 103(5), 1697–1727.CrossRefGoogle Scholar
  11. 11.
    Chen, S. H., & Chie, B. T. (2005). A functional modularity approach to agent-based modeling of the evolution of technology. In A. Namatame et al. (Eds.), The complex networks of economic interactions: Essays in agent-based economics and econophysics (Vol. 567, pp. 165–178). Heidelberg: Springer.CrossRefGoogle Scholar
  12. 12.
    Chen, S. H., & Chie, B. T. (2007). Modularity, product innovation, and consumer satisfaction: An agent-based approach. In International Conference on Intelligent Data Engineering and Automated Learning.Google Scholar
  13. 13.
    Chiarli, T., Lorentz, A., Savona, M., & Valente, M. (2010). The effect of consumption and production structure on growth and distribution: A micro to macro model. Metroeconomica, 61(1), 180–218.CrossRefGoogle Scholar
  14. 14.
    Chiarli, T., Lorentz, A., Savona, M., & Valente, M. (2016). The effect of demand-driven structural transformations on growth and technical change. Journal of Evolutionary Economics, 26(1), 219–246.CrossRefGoogle Scholar
  15. 15.
    Chie, B. T., & Chen, S. H. (2014). Non-price competition in a modular economy: An agent-based computational model. Manuscript, U. Trento.Google Scholar
  16. 16.
    Chie, B. T., & Chen, S. H. (2014). Competition in a new industrial economy: Toward an agent-based economic model of modularity. Administrative Sciences, 2014(4), 192–218.CrossRefGoogle Scholar
  17. 17.
    Dawid, H., Gemkow, S., Harting, P., van der Hoog, S., & Neugart, M. (2018). Agent-based macroeconomic modeling and policy analysis: The Eurace@Unibi model. In S. H. Chen, M. Kaboudan, & Ye-Rong Du (Eds.), Handbook of computational economics and finance. Oxford: Oxford University Press.Google Scholar
  18. 18.
    Delli Gatti, D., Gaffeo, E., Gallegati, M., & Giulioni, G. (2008). Emergent macroeconomics: An agent-based approach to business fluctuations. Berlin:Springer.Google Scholar
  19. 19.
    Dosi, G., Fagiolo, G., & Roventini, A. (2005). An evolutionary model of endogenous business cycles. Computational Economics, 27(1), 3–34.CrossRefGoogle Scholar
  20. 20.
    Fagiolo, G., & Roventini, A. (2017). Macroeconomic policy in DSGE and agent-based models redux: New developments and challenges ahead. Journal of Artificial Societies and Social Simulation, 20(1).Google Scholar
  21. 21.
    Foster, L., Haltiwanger, J. C., & Syverson, C. (2008). Reallocation, firm turnover, and efficiency: Selection on productivity or profitability? American Economic Review, 98(1), 394–425.CrossRefGoogle Scholar
  22. 22.
    Gabaix, X. (2011). The granular origins of aggregate fluctuations. Econometrica, 79, 733–772.CrossRefGoogle Scholar
  23. 23.
    Georges, C. (2011). A hedonic approach to product innovation for agent-based macroeconomic modeling. Manuscript, Hamilton College.Google Scholar
  24. 24.
    Grossman, G. M., & Helpman, E. (1991). Innovation and growth in the global economy. Cambridge, MA: The MIT Press.Google Scholar
  25. 25.
    Hidalgo, C. A., Klinger, B., Barabasi, A. L., & Hausmann, R. (2007). The product space conditions the development of nations. Science, 317, 482–487.CrossRefGoogle Scholar
  26. 26.
    Hommes, C., & Iori, G. (2015). Introduction to special issue crises and complexity. Journal of Economic Dynamics and Control, 50, 1–4.CrossRefGoogle Scholar
  27. 27.
    Horvath, M. (2000). Sectoral shocks and aggregate fluctuations. Journal of Monetary Economics, 45, 69–106.CrossRefGoogle Scholar
  28. 28.
    Hottman, C., Redding, S. J., & Weinstein, D. E. (2014). What is ‘firm heterogeneity’ in trade models? The role of quality, scope, markups, and cost. Manuscript, Columbia U.Google Scholar
  29. 29.
    Jackson, L. F. (1984). Hierarchic demand and the engel curve for variety. Review of Economics and Statistics, 66, 8–15.CrossRefGoogle Scholar
  30. 30.
    Klette, J., & Kortum, S. (2004). Innovating firms and aggregate innovation. Journal of Political Economy, 112(5), 986–1018.CrossRefGoogle Scholar
  31. 31.
    Lancaster, K. J. (1966). A new approach to consumer theory. Journal of Political Economy, 74(2), 132–157.CrossRefGoogle Scholar
  32. 32.
    Lancaster, K. J. (1966). Change and innovation in the technology of consumption. American Economic Review, 56(1/2), 14–23.Google Scholar
  33. 33.
    Marengo, L., & Valente, M. (2010). Industrial dynamics in complex product spaces: An evolutionary model. Structural Change and Economic Dynamics, 21(1), 5–16.CrossRefGoogle Scholar
  34. 34.
    Pintea, M., & Thompson, P. (2007). Technological complexity and economic growth. Review of Economic Dynamics, 10, 276–293.CrossRefGoogle Scholar
  35. 35.
    Strotz, R. H. (1957). The empirical implications of a utility tree. Econometrica, 25(2), 269–280.CrossRefGoogle Scholar
  36. 36.
    Sutton, J. (2007) Market share dynamics and the “Persistance of leadership debate. American Ecmomic Review, 97(1), 222–241.Google Scholar
  37. 37.
    Valente, M. (2012). Evolutionary demand: A model for boundedly rational consumers. Journal of Evolutionary Economics, 22, 1029–1080.CrossRefGoogle Scholar
  38. 38.
    Windrum, P., & Birchenhall, C. (1998). Is product life cycle theory a special case? Dominant designs and the emergence of market niches through coevolutionary-learning. Structural Change and Economic Dynamics, 9(1), 109–134.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of EconomicsHamilton CollegeClintonUSA

Personalised recommendations