Advertisement

Cell Site Optimization

  • Saleh Faruque
Chapter
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)

Abstract

Cell site optimization involves live air data collection as a function of distance and statistical analysis of the data for adjusting RF coverage footprints. This concluding chapter shows how these tools are used to collect live air data and perform statistical analysis to optimize the cell site.

References

  1. 1.
    M. Hata, Empirical formula for propagation loss in land mobile radio services. IEEE Trans. Veh. Technol. VT-29, 317–326 (1980)CrossRefGoogle Scholar
  2. 2.
    J. Walfisch et al., A theoretical model of UHF propagation in urban environments. IEEE Trans. Antennas Propag, AP-38, 1788–1796 (1988)CrossRefGoogle Scholar
  3. 3.
    IS-54, Dual-Mode Mobile Station—Base Station Compatibility Standard, Electronic Industries Association Engineering Department, PN-2216, Dec 1989Google Scholar
  4. 4.
    H.H. Xia et al., Radio propagation characteristics for line of sight micro cellular and personal communications. IEEE Trans. Antennas Propag. 41(10), 1439–1447 (1993)CrossRefGoogle Scholar
  5. 5.
    S. Faruque, Cellular Mobile Systems Engineering (Artech House Inc., Norwood, MA, 1996). ISBN: 0-89006-518-7Google Scholar
  6. 6.
    I. Miller, J.E. Freund, Probability and Statistics for Engineers (Prentice-Hall Inc., Englewood Cliffs, NJ, 1977)zbMATHGoogle Scholar
  7. 7.
    D.A. Freedman, Statistical Models: Theory and Practice (Cambridge University Press, New York, 2005)CrossRefGoogle Scholar
  8. 8.
    G.U. Yule, On the theory of correlation. J. R. Stat. Soc. (Blackwell Publishing) 60(4), 812–854 (1897).  https://doi.org/10.2307/2979746. JSTOR 2979746CrossRefGoogle Scholar
  9. 9.
    J.S. Armstrong, Illusions in regression analysis. Int. J. Forecasting 28(3), 689 (2012). Forthcoming.  https://doi.org/10.1016/j.ijforecast.2012.02.001CrossRefGoogle Scholar
  10. 10.
    R.A. Fisher, The goodness of fit of regression formulae, and the distribution of regression coefficients. J. R. Stat. Soc. (Blackwell Publishing) 85(4), 597–612 (1922).  https://doi.org/10.2307/2341124. JSTOR 2341124CrossRefGoogle Scholar
  11. 11.
    C. Tofallis, Least squares percentage regression. J. Mod. Appl. Stat. Methods 7, 526–534 (2009).  https://doi.org/10.2139/ssrn.1406472CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Saleh Faruque
    • 1
  1. 1.Department of Electrical EngineeringUniversity of North DakotaGrand ForksUSA

Personalised recommendations