Skip to main content

Targeted Therapeutic Nanoparticles for Cancer and Other Human Diseases

  • Chapter
  • First Online:
Nanotechnology: Applications in Energy, Drug and Food

Abstract

Targeted drug delivery is a useful approach to enhanced the present therapeutic efficacy in treating human diseases especially cancers. Nanoparticles is known for its ability to act as passive targeting agent through the enhanced permeability and retention effects and it has also shown promising results for drug or gene delivery, radiotherapy and photodynamic therapy applications. This chapter will describe the different organic and inorganic therapeutic nanoparticles that may be used with specific applications. These materials will be explained in brief alongside the reported research works and its related applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamse H, Hamblin MR (2016) New photosensitizers for photodynamic therapy. Biochem J 473(4):347–364

    Article  CAS  PubMed  Google Scholar 

  • Bachor R, Shea CR, Belmonte SJ, Hasan T (1991) Free and conjugated chlorin E6 in the photodynamic therapy of human bladder carcinoma cells. J Urol 146(6):1654–1658

    Article  CAS  PubMed  Google Scholar 

  • Ban C, Jo M, Lim S, Choi YJ (2018) Control of the gastrointestinal digestion of solid lipid nanoparticles using PEGylated emulsifiers. Food Chem 239:442–452

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Qi J, Gogoi R, Wong J, Mitragotri S (2016) Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J Control Release 238:176–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharathiraja S, Moorthy MS, Manivasagan P, Seo H, Lee KD, Oh J (2017) Chlorin e6 conjugated silica nanoparticles for targeted and effective photodynamic therapy. Photodiagn Photodyn Ther 19:212–220

    Article  CAS  Google Scholar 

  • Bovis MJ, Woodhams JH, Loizidou M, Scheglmann D, Bown SG, MacRobert AJ (2012) Improved in vivo delivery of m-THPC via pegylated liposomes for use in photodynamic therapy. J Control Release 157(2):196–205

    Article  CAS  PubMed  Google Scholar 

  • Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56(11):1649–1659

    Article  CAS  PubMed  Google Scholar 

  • Brede C, Labhasetwar V (2013) Applications of nanoparticles in the detection and treatment of kidney diseases. Adv Chronic Kidney Dis 20(6):454–465

    Article  PubMed  Google Scholar 

  • Cacciatore I, Ciulla M, Fornasari E, Marinelli L, Di Stefano A (2016) Solid lipid nanoparticles as a drug delivery system for the treatment of neurodegenerative diseases. Expert Opin Drug Deliv 13(8):1121–1131

    Article  CAS  PubMed  Google Scholar 

  • Cassim SM, Giustini AJ, Petryk AA, Strawbridge RA, Hoopes PJ (2009) Iron oxide hyperthermia and radiation cancer treatment. Proc SPIE Int Soc Opt Eng 181:71810O

    Google Scholar 

  • Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck MP, Fenart L (2007) Modelling of the blood–brain barrier in drug discovery and development. Nat Rev Drug Discov 6(8):650–661

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Ke J, Zhou XE, Yi W, Brunzelle JS, Li J et al (2013) Structural basis for molecular recognition of folic acid by folate receptors. Nature 500(7463):486–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho K, Wang XU, Nie S, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316

    Article  CAS  PubMed  Google Scholar 

  • Colombeau L, Acherar S, Baros F, Arnoux P, Gazzali AM, Zaghdoudi K et al (2016) Inorganic nanoparticles for photodynamic therapy. In: Sortino S (ed) Light-responsive nanostructured systems for applications in nanomedicine. Springer International Publishing, Cham, pp 113–134

    Chapter  Google Scholar 

  • Davis ME, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771–782

    Article  CAS  PubMed  Google Scholar 

  • Dikmen G, Genç L, Güney G (2011) Advantage and disadvantage in drug delivery systems. J Mater Sci Eng 5(4):468

    Google Scholar 

  • Esposito E, Mariani P, Ravani L, Contado C, Volta M, Bido S et al (2012) Nanoparticulate lipid dispersions for bromocriptine delivery: characterization and in vivo study. Eur J Pharm Biopharm 80(2):306–314

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Liu H, Ren Z, Li X, Huang J, Best S, Han G (2017) Luminescent CaTiO 3: Yb, Er nanofibers co-conjugated with Rose Bengal and gold nanorods for potential synergistic photodynamic/photothermal therapy. J Mater Chem B 5(26):5128–5136

    Article  CAS  PubMed  Google Scholar 

  • Fundarò A, Cavalli R, Bargoni A, Vighetto D, Zara GP, Gasco MR (2000) Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after iv administration to rats. Pharmacol Res 42(4):337–343

    Article  PubMed  CAS  Google Scholar 

  • Gao S, Wang J, Tian R, Wang G, Zhang L, Li Y et al (2017) Construction and evaluation of a targeted hyaluronic acid nanoparticle/photosensitizer complex for cancer photodynamic therapy. ACS Appl Mater Interfaces 9(38):32509–32519

    Article  CAS  PubMed  Google Scholar 

  • Gelperina S, Kisich K, Iseman MD, Heifets L (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172(12):1487–1490

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021

    Article  CAS  PubMed  Google Scholar 

  • Gupta AK, Wells S (2004) Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans Nanobioscience 3(1):66–73

    Article  PubMed  Google Scholar 

  • Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49(18):N309

    Article  CAS  PubMed  Google Scholar 

  • Hood JD, Bednarski M, Frausto R, Guccione S, Reisfeld RA, Xiang R, Cheresh DA (2002) Tumor regression by targeted gene delivery to the neovasculature. Science 296(5577):2404–2407

    Article  CAS  PubMed  Google Scholar 

  • Hsu SH, Wen CJ, Al-Suwayeh SA, Chang HW, Yen TC, Fang JY (2010) Physicochemical characterization and in vivo bioluminescence imaging of nanostructured lipid carriers for targeting the brain: apomorphine as a model drug. Nanotechnology 21(40):405101

    Article  PubMed  CAS  Google Scholar 

  • Huang G, Chen H, Dong Y, Luo X, Yu H, Moore Z et al (2013) Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics 3(2):116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur IP, Bhandari R, Bhandari S, Kakkar V (2008) Potential of solid lipid nanoparticles in brain targeting. J Control Release 127(2):97–109

    Article  CAS  PubMed  Google Scholar 

  • Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem In Press

    Google Scholar 

  • Kievit FM, Zhang M (2011) Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc Chem Res 44(10):853–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HR, Gil S, Andrieux K, Nicolas V, Appel M, Chacun H et al (2007) Low-density lipoprotein receptor-mediated endocytosis of PEGylated nanoparticles in rat brain endothelial cells. Cell Mol Life Sci 64(3):356–364

    Article  CAS  PubMed  Google Scholar 

  • Kim JK, Seo SJ, Kim KH, Kim TJ, Chung MH, Kim KR, Yang TK (2010) Therapeutic application of metallic nanoparticles combined with particle-induced x-ray emission effect. Nanotechnology 21(42):425102

    Article  PubMed  CAS  Google Scholar 

  • Klein S, Sommer A, Distel LV, Hazemann JL, Kröner W, Neuhuber W et al (2014) Superparamagnetic iron oxide nanoparticles as novel X-ray enhancer for low-dose radiation therapy. J Phys Chem B 118(23):6159–6166

    Article  CAS  PubMed  Google Scholar 

  • Kuo YC, Cheng SJ (2016) Brain targeted delivery of carmustine using solid lipid nanoparticles modified with tamoxifen and lactoferrin for antitumor proliferation. Int J Pharm 499(1):10–19

    Article  CAS  PubMed  Google Scholar 

  • Kuo YC, Hong TY (2014) Delivering etoposide to the brain using catanionic solid lipid nanoparticles with surface 5-HT-moduline. Int J Pharm 465(1):132–142

    Article  CAS  PubMed  Google Scholar 

  • Kuo YC, Lee CH (2015) Inhibition against growth of glioblastoma multiforme in vitro using etoposide-loaded solid lipid nanoparticles with p-Aminophenyl-α-d-Manno-Pyranoside and folic acid. J Pharm Sci 104(5):1804–1814

    Article  CAS  PubMed  Google Scholar 

  • Kuo YC, Liang CT (2011) Inhibition of human brain malignant glioblastoma cells using carmustine-loaded catanionic solid lipid nanoparticles with surface anti-epithelial growth factor receptor. Biomaterials 32(12):3340–3350

    Article  CAS  PubMed  Google Scholar 

  • Kuo YC, Shih-Huang CY (2014) Solid lipid nanoparticles with surface antibody for targeting the brain and inhibiting lymphatic phagocytosis. J Taiwan Inst Chem Eng 45(4):1154–1163

    Article  CAS  Google Scholar 

  • Kuo YC, Wang IH (2017) Using catanionic solid lipid nanoparticles with wheat germ agglutinin and lactoferrin for targeted delivery of etoposide to glioblastoma multiforme. J Taiwan Inst Chem Eng 77:73–82

    Article  CAS  Google Scholar 

  • Kwatra D, Venugopal A, Anant S (2013) Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res 2(4):330–342

    CAS  Google Scholar 

  • Lamprecht A (ed) (2016) Nanotherapeutics: drug delivery concepts in nanoscience. CRC Press, Boca Raton, FL

    Google Scholar 

  • Lévy R, Shaheen U, Cesbron Y, See V (2010) Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Rev 1(1):4889

    Article  CAS  Google Scholar 

  • Li L, Mak KY, Shi J, Koon HK, Leung CH, Wong CM et al (2012) Comparative in vitro cytotoxicity study on uncoated magnetic nanoparticles: effects on cell viability, cell morphology, and cellular uptake. J Nanosci Nanotechnol 12(12):9010–9017

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Yan SZ, Qi SS, Xu Q, Han SS, Guo LY et al (2017) Transferrin-modified nanoparticles for photodynamic therapy enhance the antitumor efficacy of Hypocrellin A. Front Pharmacol 8:815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu KS, Wen CJ, Yen TC, Sung KC, Ku MC, Wang JJ, Fang JY (2012) Combined strategies of apomorphine diester prodrugs and nanostructured lipid carriers for efficient brain targeting. Nanotechnology 23(9):095103

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Meng T, Yuan M, Wen L, Cheng B, Liu N et al (2016) MicroRNA-200c delivered by solid lipid nanoparticles enhances the effect of paclitaxel on breast cancer stem cell. Int J Nanomedicine 11:6713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mäder K, Mehnert W (2004) 1—solid lipid nanoparticles—concepts, procedures, and physicochemical aspects. In: Nastruzzi C (ed) Lipospheres in drug targets and delivery: approaches, methods, and applications. CRC Press, Boca Raton, FL, pp 1–22

    Google Scholar 

  • Mahmoudi M, Simchi A, Imani M, Milani AS, Stroeve P (2008) Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. J Phys Chem B 112(46):14470–14481

    Article  CAS  PubMed  Google Scholar 

  • Mahmoudi M, Simchi A, Milani AS, Stroeve P (2009) Cell toxicity of superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 336(2):510–518

    Article  CAS  PubMed  Google Scholar 

  • Mahmoudi M, Simchi A, Imani M, Shokrgozar MA, Milani AS, Häfeli UO, Stroeve P (2010) A new approach for the in vitro identification of the cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids Surf B: Biointerfaces 75(1):300–309

    Article  CAS  PubMed  Google Scholar 

  • Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B et al (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neuro-Oncol 103(2):317–324

    Article  Google Scholar 

  • Malekigorji M, Curtis ADM, Hoskins C (2014) The use of iron oxide nanoparticles for pancreatic cancer therapy. J Nanomed Res 1:1

    Google Scholar 

  • Martinez AI, Garcia-Lobato MA, Perry DL (2009) Study of the properties of iron oxide nanostructures. Res Nanotechnol Devel 19:184–193

    Google Scholar 

  • Martín-Rapun R, De Matteis L, Ambrosone A, Garcia-Embid S, Gutierrez L, De La Fuente M, J. (2017) Targeted nanoparticles for the treatment of Alzheimer’s disease. Curr Pharm Des 23:1927–1952

    Article  PubMed  CAS  Google Scholar 

  • Matsudaira H, Ueno AM, Furuno I (1980) Iodine contrast medium sensitizes cultured mammalian cells to X rays but not to γ rays. Radiat Res 84(1):144–148

    Article  CAS  PubMed  Google Scholar 

  • Mello RS, Callisen H, Winter J, Kagan AR, Norman A (1983) Radiation dose enhancement in tumors with iodine. Med Phys 10(1):75–78

    Article  CAS  Google Scholar 

  • Mishra BBTS, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine 6(1):9–24

    Article  CAS  PubMed  Google Scholar 

  • Mudshinge SR, Deore AB, Patil S, Bhalgat CM (2011) Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J 19:129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardeshi CV, Rajput PV, Belgamwar VS, Tekade AR, Surana SJ (2013) Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: application of factorial design approach. Drug Deliv 20(1):47–56

    Article  CAS  PubMed  Google Scholar 

  • Rahman WN, Bishara N, Ackerly T, He CF, Jackson P, Wong C et al (2009) Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine 5(2):136–142

    Article  CAS  PubMed  Google Scholar 

  • Reddy LH, Sharma RK, Chuttani K, Mishra AK, Murthy RSR (2005) Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton’s lymphoma tumor bearing mice. J Control Release 105(3):185–198

    Article  CAS  Google Scholar 

  • Rosen JE, Chan L, Shieh DB, Gu FX (2012) Iron oxide nanoparticles for targeted cancer imaging and diagnostics. Nanomedicine 8(3):275–290

    Article  CAS  PubMed  Google Scholar 

  • Rosenkranz AA, Jans DA, Sobolev AS (2000) Targeted intracellular delivery of photosensitizers to enhance photodynamic efficiency. Immunol Cell Biol 78(4):452–464

    Article  CAS  PubMed  Google Scholar 

  • Rui LL, Cao HL, Xue YD, Liu LC, Xu L, Gao Y, Zhang WA (2016) Functional organic nanoparticles for photodynamic therapy. Chin Chem Lett 27(8):1412–1420

    Article  CAS  Google Scholar 

  • Seo SJ, Jeon JK, Jeong EJ, Chang WS, Choi GH, Kim JK (2013) Enhancement of tumor regression by coulomb nanoradiator effect in proton treatment of iron-oxide nanoparticle-loaded orthotopic rat glioma model: implication of novel particle induced radiation therapy. J Cancer Ther 4(11):25

    Article  CAS  Google Scholar 

  • Shah B, Khunt D, Bhatt H, Misra M, Padh H (2015) Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: effect on formulation and characterization parameters. Eur J Pharm Sci 78:54–66

    Article  CAS  PubMed  Google Scholar 

  • Shin TH, Choi Y, Kim S, Cheon J (2015) Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev 44(14):4501–4516

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soenen SJ, De Cuyper M, De Smedt SC, Braeckmans K (2012) Investigating the toxic effects of iron oxide nanoparticles. Methods Enzymol 509:195–224

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Shi Q, Zhu C, Luo Y, Lu Q, Li H et al (2017) Mitochondrial-targeted multifunctional mesoporous Au@ Pt nanoparticles for dual-mode photodynamic and photothermal therapy of cancers. Nanoscale 9(41):15813–15824

    Article  CAS  PubMed  Google Scholar 

  • Spiers FW (1949) The influence of energy absorption and electron range on dosage in irradiated bone. Br J Radiol 22(261):521–533

    Article  CAS  PubMed  Google Scholar 

  • Steichen SD, Caldorera-Moore M, Peppas NA (2013) A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 48:416–427

    Article  CAS  PubMed  Google Scholar 

  • Su XY, Liu PD, Wu H, Gu N (2014) Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy. Cancer Biol Med 11(2):86

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sutradhar KB, Amin ML (2014) Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnol 2014:1–12

    Article  CAS  Google Scholar 

  • Toossi MTB, Ghorbani M, Sabet LS, Akbari F, Mehrpouyan M (2015) A Monte Carlo study on dose enhancement and photon contamination production by various nanoparticles in electron mode of a medical linac. Nukleonika 60(3):489–496

    Article  CAS  Google Scholar 

  • Tsai MJ, Huang YB, Wu PC, Fu YS, Kao YR, Fang JY, Tsai YH (2011) Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: pharmacokinetic and behavioral evaluations. J Pharm Sci 100(2):547–557

    Article  CAS  PubMed  Google Scholar 

  • Urbanski M, Mirzaei J, Sharma A, Hofmann D, Kitzerow H-S, Hegmann T (2016) Chemically and thermally stable, emissive carbon dots as viable alternatives to semiconductor quantum dots for emissive nematic liquid crystal–nanoparticle mixtures with lower threshold voltage. Liq Cryst 43:183–194

    Article  CAS  Google Scholar 

  • Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304

    Article  CAS  PubMed  Google Scholar 

  • Wen CJ, Zhang LW, Al-Suwayeh SA, Yen TC, Fang JY (2012) Theranostic liposomes loaded with quantum dots and apomorphine for brain targeting and bioimaging. Int J Nanomedicine 7:1599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wennink JW, Liu Y, Mäkinen PI, Setaro F, de la Escosura A, Bourajjaj M et al (2017) Macrophage selective photodynamic therapy by meta-tetra (hydroxyphenyl) chlorin loaded polymeric micelles: a possible treatment for cardiovascular diseases. Eur J Pharm Sci 107:112–125

    Article  CAS  PubMed  Google Scholar 

  • Westman JA (2006) Medical genetics for the modern clinician. Lippincott Williams & Wilkins, Philadelphia, PA

    Google Scholar 

  • Wong HL, Bendayan R, Rauth AM, Wu XY (2004) Development of solid lipid nanoparticles containing ionically complexed chemotherapeutic drugs and chemosensitizers. J Pharm Sci 93(8):1993–2008

    Article  CAS  PubMed  Google Scholar 

  • Wong HL, Bendayan R, Rauth AM, Wu XY (2006a) Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new polymer-lipid hybrid nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer. J Control Release 116(3):275–284

    Article  CAS  PubMed  Google Scholar 

  • Wong HL, Rauth AM, Bendayan R, Manias JL, Ramaswamy M, Liu Z et al (2006b) A new polymer–lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm Res 23(7):1574–1585

    Article  CAS  PubMed  Google Scholar 

  • Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3(11):397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Han H, Jin Q, Li Z, Li H, Ji J (2017) Design and proof of programmed 5-aminolevulinic acid prodrug nanocarriers for targeted photodynamic cancer therapy. ACS Appl Mater Interfaces 9(17):14596–14605

    Article  CAS  PubMed  Google Scholar 

  • Xie L, Jiang R, Zhu F, Liu H, Ouyang G (2014) Application of functionalized magnetic nanoparticles in sample preparation. Anal Bioanal Chem 406(2):377–399

    Article  CAS  PubMed  Google Scholar 

  • Yang SC, Lu LF, Cai Y, Zhu JB, Liang BW, Yang CZ (1999) Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Release 59(3):299–307

    Article  CAS  PubMed  Google Scholar 

  • Youssef Z, Vanderesse R, Colombeau L, Baros F, Roques-Carmes T, Frochot C et al (2017) The application of titanium dioxide, zinc oxide, fullerene, and graphene nanoparticles in photodynamic therapy. Cancer Nanotechnol 8(1):6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yusuf M, Khan M, Khan RA, Ahmed B (2013) Preparation, characterization, in vivo and biochemical evaluation of brain targeted Piperine solid lipid nanoparticles in an experimentally induced Alzheimer’s disease model. J Drug Target 21(3):300–311

    Article  CAS  PubMed  Google Scholar 

  • Zara GP, Cavalli R, Bargoni A, Fundarò A, Vighetto D, Gasco MR (2002) Intravenous administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and other tissues. J Drug Target 10(4):327–335

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Ministry of Education (MOE) Malaysia for funding this work under Transdisciplinary Research Grant Scheme (TRGS) grant no. 6769003. The authors are very much grateful to Universiti Sains Malaysia (USM) for providing the necessary facilities to carry out the research work and financial support under USM-Short Term Research Grant (304/CIPPT/6315073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabiatul Basria S. M. N. Mydin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mydin, R.B.S.M.N., Rahman, W.N., Lazim, R.M., Mohd Gazzali, A., Azlan, N.H.M., Moshawih, S. (2019). Targeted Therapeutic Nanoparticles for Cancer and Other Human Diseases. In: Siddiquee, S., Melvin, G., Rahman, M. (eds) Nanotechnology: Applications in Energy, Drug and Food. Springer, Cham. https://doi.org/10.1007/978-3-319-99602-8_8

Download citation

Publish with us

Policies and ethics