Skip to main content

Emerging Nanotechnology for Third Generation Photovoltaic Cells

  • Chapter
  • First Online:

Abstract

Nanotechnology for solar energy harvesting is attracting significant attention for its drastic improvement in performance. Recent innovation in the material and device structure for the photovoltaic solar cell improves the efficiency, cost and stability. Various approaches have been envisioned to enhance the efficiency. Nanotechnology includes engineering in some fundamental properties, structure of the nanomaterial and the devices architecture. Engineering the fundament properties of the nanomaterial can enhance the photon harvesting as well as the inherent recombination. The basic approaches in nanotechnology, intermediate band and multiple exciton generation can give the promise to enhance the power conversion efficiency in third generation photovoltaic cell. In recent years new and improved device architecture has been coupled with engineered nanomaterial showing better efficiency which can be compared with conventional silicon solar cell. Recently, multi-junction (38.9%, four junctions) and perovskite solar cell (22.7%) are showing notable device efficiency. New generation of photovoltaic technologies reduces the material amount which consequently reduces the material cost and the fabrication cost making the system economically feasible. Future research needs to focus on the development of new and green material for photovoltaic cell with minimal fabrication cost. To make the photovoltaic materials and system environment friendly, use of bio-based materials could be the promising future approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdulrazzaq OA, Saini V, Bourdo S, Dervishi E, Biris AS (2013) Organic solar cells: a review of materials, limitations, and possibilities for improvement. Part Sci Technol 31(5):427–442

    Article  CAS  Google Scholar 

  • Al-Mohsin HA, Mineart KP, Armstrong DP, El-Shafei AA, Spontak RJ (2018) Quasi-Solid-State Dye‐ Sensitized Solar Cells Containing a Charged Thermoplastic Elastomeric Gel Electrolyte and Hydrophilic/phobic Photosensitizers. Solar RRL, 2:1700145

    Article  Google Scholar 

  • Ansari Haque MI, Qurashi A, Nazeeruddin MK (2018) Frontiers, opportunities, and challenges in perovskite solar cells: a critical review. J Photochem Photobiol C Photchem Rev 35:1–24

    Article  CAS  Google Scholar 

  • Assadi MK, Hanaei H, (2017) Transparent Carbon Nanotubes (CNTs) as Antireflection and Self-cleaning Solar Cell Coating. In: Engineering Applications of Nanotechnology. Springer, 101–114

    Google Scholar 

  • Atwater Harry A, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205

    Article  CAS  PubMed  Google Scholar 

  • Bajpai M, Srivastava R, Dhar R (2017) Effect of plasmonic enhancement of light absorption on the efficiency of polymer solar cell. In: Recent trends in materials and devices. Springer, Cham, New York, pp 315–317

    Chapter  Google Scholar 

  • Beard MC, Randy JE (2008) Multiple exciton generation in semiconductor nanocrystals: Toward efficient solar energy conversion. Laser Photonics Rev 2(5):377–399

    Article  CAS  Google Scholar 

  • Benanti TL, Venkataraman D (2006) Organic solar cells: An overview focusing on active layer morphology. Photosynth Res 87(1):73–81

    Article  CAS  PubMed  Google Scholar 

  • Bin L, Wang L, Kang B, Wang P, Qiu Y (2006) Review of recent progress in solid-state dye-sensitized solar cells. Sol Energy Mater Sol Cells 90(5):549–573

    Article  CAS  Google Scholar 

  • Bitnar B, Durisch W, Holzner R (2013) Thermophotovoltaics on the move to applications. Appl Energy 105:430–438

    Article  CAS  Google Scholar 

  • Cao G (2004) Nanostructures & nanomaterials: synthesis, properties & applications. Imperial College Press, London

    Book  Google Scholar 

  • Cao J, Wu B, Chen R, Wu Y, Hui Y, Mao BW, Zheng N (2018) Efficient, Hysteresis Free, and Stable Perovskite Solar Cells with ZnO as Electron Transport Layer: Effect of Surface Passivation. Advanced Materials 30:1705596

    Article  CAS  Google Scholar 

  • Chan L, DeCuir EA Jr, Fu R, Morse DE, Gordon MJ (2017) Biomimetic nanostructures in ZnS and ZnSe provide broadband anti-reflectivity. J Opt 19(11):114007

    Article  CAS  Google Scholar 

  • Chuang CHM, Brown PR, Bulović V, Bawendi MG (2014) Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat Mater 13(8):796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coutts TJ (2001) An overview of thermophotovoltaic generation of electricity. Sol Energy Mater Sol Cells 66(1–4):443–452

    Article  CAS  Google Scholar 

  • De Wild J, Meijerink A, Rath JK, Van Sark WGJHM, Schropp REI (2011) Upconverter solar cells: materials and applications. Energy Environ Sci 12:4835–4848

    Article  CAS  Google Scholar 

  • Ding I (2011) Plasmonic dye-sensitized solar cells. Adv Energy Mater 1(1):52–57

    Article  CAS  Google Scholar 

  • Djurišić AB, Liu FZ, Tam HW, Wong MK, Ng A, Surya C, Chen W, He ZB (2017) Perovskite solar cells–an overview of critical issues. Prog Quantum Electron 53:1–37

    Article  Google Scholar 

  • Dong S, Pootrakulchote N, Li R, Guo J, Wang Y, Zakeeruddin SM, Grätzel M, Wang P (2008) New efficiency records for stable dye-sensitized solar cells with low-volatility and ionic liquid electrolytes. J Phys Chem C 112(44):17046–17050

    Article  CAS  Google Scholar 

  • El Chaar L, Lamont LA, El Zein N (2011) Review of photovoltaic technologies. Renew Sust Energ Rev 15:2165–2175

    Article  CAS  Google Scholar 

  • Fahrenbruch AL, Richard HB (2012) Fundamental of solar cell: photovoltaic solar energy conversion. Academic Press, Cambridge, MA ISBN-0-12-247680-8

    Google Scholar 

  • Flory F, Escoubas L, Berginc G (2011) Optical properties of nanostructured materials: a review. J Nanophotonics 5:052502

    Article  Google Scholar 

  • Fonash S (2012) Solar cell device physics. Elsevier, New York

    Google Scholar 

  • Fujishima A, Zhang XT (2006) Solid-state dye-sensitized solar cells. In: Nanostructured materials for solar energy conversion. Elsevier, New York, pp 255–273

    Chapter  Google Scholar 

  • Gao F, Wang Y, Shi D, Zhang J, Wang M, Jing X, Humphry-Baker R, Wang P, Zakeeruddin SM, Grätzel M (2008) Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J Am Chem Soc 130(32):10720–10728

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Dai H, Pan H, Chen Y, Wang J, Chen Z (2018) Performance enhancement of perovskite solar cells by employing TiO2 nanorod arrays decorated with CuInS2 quantum dots. J Colloid Interface Sci 513:693–699

    Article  CAS  PubMed  Google Scholar 

  • Garret M, Grover S (2013) Rectenna solar cells, 4th edn. Springer, New York

    Google Scholar 

  • Gorlov M, Kloo L (2008) Ionic liquid electrolytes for dye-sensitized solar cells. Dalton Trans 20:2655–2666

    Article  CAS  Google Scholar 

  • Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C Photchem Rev 4(2):145–153

    Article  CAS  Google Scholar 

  • Green MA (1981) Solar cells: operating principles, technology, and system applications. Prentice Hall, Englewood Cliffs, NJ ISBN: 0138222703

    Google Scholar 

  • Green MA (2018) Solar cell efficiency tables (version 51). Prog Photovolt Res Appl 26:3–12

    Article  Google Scholar 

  • Guarnera S, Abate A, Zhang W, Foster JM, Richardson G, Petrozza A, Snaith HJ (2015) Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer. J Phys Chem Lett 6(3):432–437

    Article  CAS  PubMed  Google Scholar 

  • Habisreutinger SN, Leijtens T, Eperon GE, Stranks SD, Nicholas RJ, Snaith HJ (2014) Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett 14(10):5561–5568

    Article  CAS  PubMed  Google Scholar 

  • Hahn H (2003) Unique features and properties of nanostructured materials. Adv Eng Mater 5(5):277–284

    Article  CAS  Google Scholar 

  • Han N, Wang F, Johnny C (2012) One-dimensional nanostructured materials for solar energy harvesting. Nanomater Energy 1(1):4–17

    Article  Google Scholar 

  • Heremans P, Cheyns D, Rand BP (2009) Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. Acc Chem Res 42(11):1740–1747

    Article  CAS  PubMed  Google Scholar 

  • Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19(7):1924–1945

    Article  CAS  Google Scholar 

  • Horst S, Wang J, Wilkinson SJ (2018) Durable MGO-MGF2 composite film for infrared anti-reflection coatings. US Patent Application No. 15/450,647

    Google Scholar 

  • Hou J, Inganäs O, Friend RH, Gao F (2018) Organic solar cells based on non-fullerene acceptors. Nat Mater 17(2):119

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Zhang Z, Mei A, Jiang Y, Hou X, Wang Q, Du K, Rong Y, Zhou Y, Xu G, Han H (2018) Improved performance of printable perovskite solar cells with bifunctional conjugated organic molecule. Adv Mater 30(11). https://doi.org/10.1002/adma.201705786

    Article  CAS  Google Scholar 

  • Huang A, Lei L, Zhu J, Yu Y, Liu Y, Yang S, Bao S, Cao X, Jin P (2017) Achieving high current density of perovskite solar cells by modulating the dominated facets of room-temperature DC magnetron sputtered TiO2 electron extraction layer. ACS Appl Mater Interfaces 9(3):2016–2022

    Article  CAS  PubMed  Google Scholar 

  • Ishii T, Masuda A (2017) Annual degradation rates of recent crystalline silicon photovoltaic modules. Prog Photovoltaics 25:953–967

    Article  CAS  Google Scholar 

  • Jacoby M (2016) The future of low-cost solar cells. Chem Eng News 94(18):30–35

    Article  Google Scholar 

  • Jeong YJ, Song JH, Jeong S, Baik SJ (2018) PbS Colloidal Quantum Dot Solar Cells With Organic Hole Transport Layers for Enhanced Carrier Separation and Ambient Stability. IEEE J Photovoltaics 99:1–6

    Google Scholar 

  • Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112(48):18737–18753

    Article  CAS  Google Scholar 

  • Kamat PV (2013) Quantum dot solar cells. The next big thing in photovoltaics. J Phys Chem Lett 4(6):908–918

    Article  CAS  PubMed  Google Scholar 

  • Kaur N, Singh M, Pathak D, Wagner T, Nunzi JM (2014) Organic materials for photovoltaic applications: Review and mechanism. Synth Met 190:20–26

    Article  CAS  Google Scholar 

  • Kilic B, Turkdogan S, Astam A, Baran SS, Asgin M, Gur E, Kocak Y (2018) Interfacial engineering of CuO nanorod/ZnO nanowire hybrid nanostructure photoanode in dye-sensitized solar cell. J Nanopart Res 20(1):11

    Article  CAS  Google Scholar 

  • Kim JY, Kim SH, Lee HH, Lee K, Ma W, Gong X, Heeger AJ (2006) New Architecture for high efficiency polymer photovoltaic cells using solution based titanium oxide as an optical spacer. Adv Mater 18(5):572–576

    Article  CAS  Google Scholar 

  • Kim JM, Kim S, Shin DH, Seo SW, Lee HS, Kim JH, Jang CW, Kang SS, Choi SH, Kwak GY, Kim KJ (2018) Si-quantum-dot heterojunction solar cells with 16.2% efficiency achieved by employing doped-graphene transparent conductive electrodes. Nano Energy 43:124–129

    Article  CAS  Google Scholar 

  • Krebs FC, Spanggaard H (2005) Significant improvement of polymer solar cell stability. Chem Mater 17(21):5235–5237

    Article  CAS  Google Scholar 

  • Kyaw AKK, Wang DH, Wynands D, Zhang J, Nguyen TQ, Bazan GC, Heeger AJ (2013) Improved light harvesting and improved efficiency by insertion of an optical spacer (ZnO) in solution-processed small-molecule solar cells. Nano Lett 13(8):3796–3801

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Ruby DS, Peters DW, McKenzie BB, Hsu JW (2008) ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett 8(5):1501–1505

    Article  CAS  PubMed  Google Scholar 

  • Li G, Zhu R, Yang Y (2012) Polymer solar cells. Nat Photonics 6(3):153

    Article  CAS  Google Scholar 

  • Lim SP, Lim YS, Pandikumar A, Lim HN, Ng YH, Ramaraj R, Bien DCS, Abou-Zied OK, Huang NM (2017) Gold–silver@ TiO2 nanocomposite-modified plasmonic photoanodes for higher efficiency dye-sensitized solar cells. Phys Chem Chem Phys 19(2):1395–1407

    Article  CAS  PubMed  Google Scholar 

  • Lim EL, Yap CC, Jumali MHH, Teridi MAM, Teh CH (2018) A mini review: can graphene be a novel material for perovskite solar cell applications? Nano-Micro Lett 10(2):27

    Article  CAS  Google Scholar 

  • Luisa HF, Sutherland D (2013) Nanotechnologies: principles, applications, implications and hands-on activities. Publications Office of the European Union, Luxembourg

    Google Scholar 

  • Mali SS, Shim CS, Park HK, Heo J, Patil PS, Hong CK (2015) Ultrathin atomic layer deposited TiO2 for surface passivation of hydrothermally grown 1D TiO2 nanorod arrays for efficient solid-state perovskite solar cells. Chem Mater 27(5):1541–1551

    Article  CAS  Google Scholar 

  • Mandal P, Sharma S (2016) Progress in plasmonic solar cell efficiency improvement: a status review. Renew Sust Energ Rev 65:537–552

    Article  CAS  Google Scholar 

  • Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BF, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6(3):242

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Fischer MK, Bäuerle P (2009) Metal free organic dyes for dye sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed 48(14):2474–2499

    Article  CAS  Google Scholar 

  • Mlinar V (2013) Engineered nanomaterials for solar energy conversion. Nanotechnology 24(4):042001

    Article  PubMed  CAS  Google Scholar 

  • Mora-Sero I, Gimenez S, Fabregat-Santiago F, Gomez R, Shen Q, Toyoda T, Bisquert J (2009) Recombination in quantum dot sensitized solar cells. Acc Chem Res 42(11):1848–1857

    Article  CAS  PubMed  Google Scholar 

  • Nam M, Huh JY, Park Y, Hong YC , Ko DH (2018) Interfacial Modification Using Hydrogenated TiO2 Electron Selective Layers for High Efficiency and Light Soaking Free Organic Solar Cells. Advanced Energy Materials 8:1703064

    Article  CAS  Google Scholar 

  • Neamen DA (1997) Semiconductor physics and devices, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Nozik AJ (2002) Quantum dot solar cells. Phys E 14:115–120

    Article  CAS  Google Scholar 

  • Peike C, Hädrich I, Wei KA, Dürr I (2013) Overview of PV module encapsulation materials. Photovol Int 19:85–92

    Google Scholar 

  • Pelecky L, Diandra L, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8(8):1770–1783

    Article  Google Scholar 

  • Pillai SA, Green MA (2010) Plasmonics for photovoltaic applications. Sol Energy Mater Sol Cells 94(9):1481–1486

    Article  CAS  Google Scholar 

  • Piyadasa A, Wang S, Gao PX (2017) Band structure engineering strategies of metal oxide semiconductor nanowires and related nanostructures: a review. Semicond Sci Technol 32(7):073001

    Article  CAS  Google Scholar 

  • Qi J, Dang X, Hammond PT, Belcher AM (2011) Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@ oxide core–shell nanostructure. ACS Nano 5(9):7108–7116

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Zhao Z, Wang Y, Wu J, Jiang Q, You J (2017) Recent progress in stability of perovskite solar cells. J Semicond 38(1):011002

    Article  CAS  Google Scholar 

  • Reddy K, Sekhar C (2018) Broad band antireflective coatings using novel in-situ synthesis of hollow MgF2 nanoparticles. Sol Energy Mater Sol Cells 176:259–265

    Article  CAS  Google Scholar 

  • Reinders L, Ang Ã, Verlinden P, Freundlich A (2017) Photovoltaic solar energy: from fundamentals to applications. John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  • Ren Y, Sun D, Tsao HN, Yuan Y, Zakeeruddin SM, Wang P, Grätzel M (2018) A stable blue photosensitizer for color palette of dye-sensitized solar cells reaching 12.6% efficiency. J Am Chem Soc 140(7):2405–2408

    Article  CAS  PubMed  Google Scholar 

  • Rho WY, Yang HY, Kim HS, Son BS, Suh JS, Jun BH (2018a) Recent advances in plasmonic dye-sensitized solar cells. J Solid State Chem 258:271–282

    Article  CAS  Google Scholar 

  • Rho WY, Kim HS, Chung WJ, Suh JS, Jun BH, Hahn YB (2018b) Enhancement of power conversion efficiency with TiO2 nanoparticles/nanotubes-silver nanoparticles composites in dye-sensitized solar cells. Appl Surf Sci 429:23–28

    Article  CAS  Google Scholar 

  • Richards BS, Aruna I, MacDougall SKW Hueso JM (2012) Up-and down-conversion materials for photovoltaic devices. In: Photonics for solar energy systems IV, 8438. International Society for Optics and Photonics, Bellingham, WA, p 843802

    Google Scholar 

  • Rühle S, Shalom M, Zaban A (2010) Quantum dot sensitized solar cells. ChemPhysChem 11(11):2290–2304

    Article  PubMed  CAS  Google Scholar 

  • Selvaraj P, Baig H, Mallick TK, Siviter J, Montecucco A, Li W, Paul M, Sweet T, Gao M, Knox AR, Sundaram S (2018) Enhancing the efficiency of transparent dye-sensitized solar cells using concentrated light. Sol Energy Mater Sol Cells 175:29–34

    Article  CAS  Google Scholar 

  • Semonin OE, Luther JM, Beard MC (2012) Quantum dots for next-generation photovoltaics. Mater Today 15(11):508–515

    Article  CAS  Google Scholar 

  • Seo JY, Uchida R, Kim HS, Saygili Y, Luo J, Moore C, Kerrod J, Wagstaff A, Eklund M, McIntyre R, Pellet N (2018) Boosting the efficiency of perovskite solar cells with csbr modified mesoporous TiO2 beads as electron selective contact. Adv Funct Mater 28:1705763

    Article  CAS  Google Scholar 

  • Shan GB, Demopoulos GP (2010) Near infrared sunlight harvesting in dye sensitized solar cells via the insertion of an up-converter TiO2 nanocomposite layer. Adv Mater 22(39):4373–4377

    Article  CAS  PubMed  Google Scholar 

  • Shang Y, Shuwei H, Chunhui Y, Guanying C (2015) Enhancing solar cell efficiency using photon upconversion materials. Nano 5:1782–1809

    CAS  Google Scholar 

  • Sharma A, Singh V, Bougher TL, Cola BA (2015) A carbon nanotube optical rectenna. Nat Nanotechnol 10(12):1027

    Article  CAS  PubMed  Google Scholar 

  • Shi E, Zhang L, Li Z, Li P, Shang Y, Jia Y, Jinquan W (2012) TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%. Sci Rep 2:884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh SC (2015) Solar photovoltaics: fundamentals, technologies and applications. PHI Learning Pvt. Ltd., New Delhi

    Google Scholar 

  • Sining Y, Lund PD, Hinsch A (2015) Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells. Energy Environ Sci 8(12):3495–3514

    Article  CAS  Google Scholar 

  • Sogabe T, Shen Q, Yamaguchi K (2016) Recent progress on quantum dot solar cells: a review. J Photonics Energy 6(4):040901

    Article  Google Scholar 

  • Son DY, Im JH, Kim HS, Park NG (2014) 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. J Phys Chem C 118(30):16567–16573

    Article  CAS  Google Scholar 

  • Steim R, Kogler FR, Brabec CJ (2010) Interface materials for organic solar cells. J Mater Chem 20(13):2499–2512

    Article  CAS  Google Scholar 

  • Sun Z, Xiahou Y, Cao T, Zhang K, Wang Z, Huang P, Zhu K, Yuan L, Zhou Y, Song B, Xia H (2018) Enhanced p-i-n type perovskite solar cells by doping AuAg@ AuAg core-shell alloy nanocrystals into PEDOT: PSS layer. Org Electron 52:309–316

    Article  CAS  Google Scholar 

  • Sze SM, Ng KK (2006) Physics of semiconductor devices. John Wiley & Sons, Hoboken, NJ

    Book  Google Scholar 

  • Tang Q, Zhang H, He B, Yang P (2016) An all-weather solar cell that can harvest energy from sunlight and rain. Nano Energy 30:818–824

    Article  CAS  Google Scholar 

  • Teymourinia H, Salavati-Niasari M, Amiri O, Farangi M (2018) Facile synthesis of graphene quantum dots from corn powder and their application as down conversion effect in quantum dot-dye-sensitized solar cell. J Mol Liq 251:267–272

    Article  CAS  Google Scholar 

  • Tsakalakos L (2010) Nanotechnology for photovoltaics. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Van Sark WGJHM, Meijerink A, Schropp REI (2012) Solar spectrum conversion for photovoltaics using nanoparticles. In: Third generation photovoltaics. InTech, London

    Google Scholar 

  • Vangelidis I, Theodosi A, Beliatis MJ, Gandhi K, Laskarakis A, Patsalas P, Logothetidis S, Silva SRPP, Lidorikis E (2018) plasmonic organic photovoltaics: unraveling plasmonic enhancement for realistic cell geometries. ACS Photonics 5(4):1440–1452

    Article  CAS  Google Scholar 

  • Wang N, Liu M, Tan H, Liang J, Zhang Q, Wei C, Zhao Y, Sargent EH, Zhang X (2017) Compound homojunction: heterojunction reduces bulk and interface recombination in ZnO photoanodes for water splitting. Small 13(10):1603527

    Article  CAS  Google Scholar 

  • Wang R, Wu X, Xu K, Zhou W, Shang Y, Tang H, Chen H, Ning Z (2018a) Highly efficient inverted structural quantum dot solar cells. Adv Mater 30(7):1704882

    Article  CAS  Google Scholar 

  • Wang Y, Zhang Q, Huang F, Li Z, Zheng YZ, Tao X, Cao G (2018b) In situ assembly of well-defined Au nanoparticles in TiO2 films for plasmon-enhanced quantum dot sensitized solar cells. Nano Energy 44:135–143

    Article  CAS  Google Scholar 

  • Wang Y, Zhang Y, Qiu N, Feng H, Gao H, Kan B, Ma Y, Li C, Wan X, Chen Y (2018c) A halogenation strategy for over 12% efficiency nonfullerene organic solar cells. Adv Energy Mater 8:1702870

    Article  CAS  Google Scholar 

  • Wei H, Li D, Zheng X, Meng Q (2018) Recent progress of colloidal quantum dot based solar cells. Chin Phys B 27(1):018808

    Article  CAS  Google Scholar 

  • Wolf M (1971) A new look at silicon solar cell performance. Energy Convers 11(2):63–73

    Article  CAS  Google Scholar 

  • Womack G, Kaminski PM, Ali A, Isbilir K, Gottschalg R, Walls JM (2017) Performance and durability of broadband antireflection coatings for thin film CdTe solar cells. J Vac Sci Technol A 35:021201

    Article  CAS  Google Scholar 

  • Wu Q, Hou J, Zhao H, Liu Z, Yue X, Peng S, Cao H (2018) Charge recombination control for high efficiency CdS/CdSe quantum dot co-sensitized solar cells with multi-ZnS-layer. Dalton Trans 47(7):2214–2221

    Article  CAS  PubMed  Google Scholar 

  • Xiao B, Song J, Guo B, Zhang M, Li W, Zhou R, Liu J, Wang HB, Zhang M, Luo G, Liu F (2018) Improved photocurrent and efficiency of non-fullerene organic solar cells despite higher charge recombination. J Mater Chem A 6:957–962

    Article  CAS  Google Scholar 

  • Yang Y (2017) Broadband graphene oxide anti-reflection coating on silicon nanostructures. In: Frontiers in optics. Optical Society of America, Washington, DC

    Google Scholar 

  • Ye M, Wen X, Wang M, Iocozzia J, Zhang N, Lin C, Lin Z (2015) Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater Today 18(3):155–162

    Article  CAS  Google Scholar 

  • Ye C, Wang Y, Bi Z, Guo X, Fan Q, Chen J, Ou X, Ma W, Zhang M (2018) High-performance organic solar cells based on a small molecule with thieno [3, 2-b] thiophene as π-bridge. Org Electron 53:273–279

    Article  CAS  Google Scholar 

  • Yeh MH, Leu YA, Chiang WH, Li YS, Chen GL, Li TJ, Chang LY, Lin LY, Lin JJ, Ho KC (2018) Boron-doped carbon nanotubes as metal-free electrocatalyst for dye-sensitized solar cells: heteroatom doping level effect on tri-iodide reduction reaction. J Power Sources 375:29–36

    Article  CAS  Google Scholar 

  • You J, Meng L, Song TB, Guo TF, Yang MY, Chang WH, Hong Z (2016) Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotechnol 11:75–81

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Wang S, Li X, Xiao Y (2016) Recent progress of perovskite solar cells. Curr Nanosci 12(2):137–156

    Article  CAS  Google Scholar 

  • Zhang J, Marina F, Anders H, Gerrit B (2018a) Solid-state dye-sensitized solar cells. In: Molecular devices for solar energy conversion and storage. Springer, Singapore, pp 151–185

    Chapter  Google Scholar 

  • Zhang J, Meng Z, Guo D, Zou H, Yu J, Fan K (2018b) Hole-conductor-free perovskite solar cells prepared with carbon counter electrode. Appl Surf Sci 430:531–538

    Article  CAS  Google Scholar 

  • Zhang R, Zhao M, Wang Z, Wang Z, Zhao B, Miao Y, Zhou Y, Wang H, Hao Y, Chen G, Zhu F (2018c) Solution-processable ZnO/carbon quantum dots electron extraction layer for highly efficient polymer solar cells. ACS Appl Mater Interfaces 10(5):4895–4903

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J (2017) Molecular optimization enables over 13% efficiency in organic solar cells. J Am Chem Soc 139(21):7148–7151

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z, Ji H, Yu P, Wang Z (2016) Recent progress towards quantum dot solar cells with enhanced optical absorption. Nanoscale Res Lett 11(1):266

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng YZ, Tao X, Zhang JW, Lai XS, Li N (2018a) Plasmonic enhancement of light-harvesting efficiency in tandem dye-sensitized solar cells using multiplexed gold core/silica shell nanorods. J Power Sources 376:26–32

    Article  CAS  Google Scholar 

  • Zhou X, Bao C, Li F, Gao H, Yu T, Yang J, Zhu W, Zou Z (2015) Hole-transport-material-free perovskite solar cells based on nanoporous gold back electrode. RSC Adv 5(72):58543–58548

    Article  CAS  Google Scholar 

  • Zhou Z, Sakr E, Sun Y, Bermel P (2016) Solar thermophotovoltaics: reshaping the solar spectrum. Nanophotonics 5(1):1–21

    Article  CAS  Google Scholar 

  • Zhu Z, Ma J, Wang Z, Mu C, Fan Z, Du L, Bai Y, Fan L, Yan H, Phillips DL, Yang S (2014) Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J Am Chem Soc 136(10):3760–3763

    Article  CAS  PubMed  Google Scholar 

  • Zou W, Visser C, Maduro JA, Pshenichnikov MS, Hummelen JC (2012) Broadband dye-sensitized upconversion of near-infrared light. Nat Photonics 6(8):560

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajbongshi, B.M., Verma, A. (2019). Emerging Nanotechnology for Third Generation Photovoltaic Cells. In: Siddiquee, S., Melvin, G., Rahman, M. (eds) Nanotechnology: Applications in Energy, Drug and Food. Springer, Cham. https://doi.org/10.1007/978-3-319-99602-8_5

Download citation

Publish with us

Policies and ethics