Skip to main content

Acetylcholinesterase (AChE) Biosensors for Determination of Carbamate Pesticides

  • Chapter
  • First Online:
Book cover Nanotechnology: Applications in Energy, Drug and Food

Abstract

Carbamate pesticides are widely applied for controlling pests in agriculture crops due to high insecticidal action and persistence in the environment. The wide applications of carbamate pesticide has required for strictly monitoring the residue levels of carbamate pesticide. Currently several analytical techniques are available for determination of carbamate pesticide residues such as gas chromatography, high-performance liquid chromatography coupled with various detectors, ultraviolet spectroscopy, surface plasmon resonance and fluorimetry involved a sample preparation step prior to further analysis. However, these techniques have some drawbacks such as requiring skill work force and time-consuming sample extraction procedures with high volumes of organic solvents. Enzymatic biosensors-based acetylcholinesterase offers a simple, rapid, high sensitivity and on-site monitoring for determination of carbamate pesticide concentrations. In this book chapter , enzyme-based biosensor methods briefly explained for determination of carbamate pesticide levels, and the immobilization techniques and carbamate pesticide toxicity discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alavanja MCR, Hoppin J, Kamel F (2005) Health effects of chronic pesticide exposure: cancer and neurotoxicity. Annu Rev Public Health 25:155–197

    Article  Google Scholar 

  • Altavilla C, Ciliberto E (2011) Inorganic Nanoparticles: Synthesis, Applications, and Perspectives, CRC Press, 33–68

    Google Scholar 

  • Amine A, Mohammadi H, Bourais I, Palleschi G (2006) Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens Bioelectron 21:1405–1423

    Article  CAS  PubMed  Google Scholar 

  • Aragay G, Pino F, Merkoçi A (2012) Nanomaterials for sensing and destroying pesticides. Chem Rev 112(10):5317–5338

    Article  CAS  PubMed  Google Scholar 

  • Ardao I, Alvaro G, Benaiges MD (2011) Reversible immobilization of rhamnulose-1-phosphate aldolase for biocatalysis: enzyme loading optimization and aldol addition kinetic modeling. Biochem Eng J 56:190–197

    Article  CAS  Google Scholar 

  • Arkhypova VN, Martelet C, Jaffrezic-Renault N, Chovelon JM, Elskaya AV, Soldtkin AP (2004) Potentiometric biosensor based on ISFETS and immobilized cholinesterases. Electroanalysis 16:1873–1882

    Article  CAS  Google Scholar 

  • Badihi-Mossberg M, Buchner V, Rishpon J (2007) Electrochemical biosensors for pollutants in the environment. Electroanalysis 19:2015–2028

    Article  CAS  Google Scholar 

  • Barberis A, Spissu Y, Fadda A, Azara E, Bazzu G, Marceddu S, Angioni A, Sanna D, Schirra M, Serra PA (2015) Simultaneous amperometric detection of ascorbic acid and antioxidant capacity in orange, blueberry and kiwi juice, by a telemetric system coupled with a fullerene-or nanotubes-modified ascorbate subtractive biosensor. Biosens Bioelectron 67: 214–223

    Article  CAS  PubMed  Google Scholar 

  • Bayramoglu G, Metin AU, Altintas B, Arica MY (2010) Reversible immobilization of glucose oxidase on polyaniline grafted polyacrylonitrile conductive composite membrane. Bioresour Technol 101:6881–6887

    Article  CAS  PubMed  Google Scholar 

  • Bonnet C, Andreescu S, Marty JL (2003) Adsorption: easy and efficient immobilisation of acetylcholinesterase on screen printed electrodes. Anal Chim Acta 481:209–211

    Article  CAS  Google Scholar 

  • Brena BM, Batista-Viera F (2006) Immobilization of Enzymes. In Methods in Biotechnology: Immobilization of Enzymes and Cells, Second Edition, 15–30. Totowa: Humana Press Inc.

    Chapter  Google Scholar 

  • Brownson DA, Banks CE (2010) Graphene electrochemistry: an overview of potential applications. Analyst 135(11): 2768–2778

    Article  CAS  PubMed  Google Scholar 

  • Bucur B, Campas M, Prieto-Simon B, Andreescu S, Marty JL (2006) Enzymatic biosensors for screening carbamate insecticides: application to environmental and food monitoring. Ecol Chem Eng 13:339–348

    CAS  Google Scholar 

  • Cesarino I, Moraes FC, Lanza MRV, Machado SAS (2012) Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilized on a composite of polyaniline-carbon naotubes. Food Chem 135:873–879

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Yuan R, Chai Y, Hu F (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180(1-2):15–32

    Article  CAS  Google Scholar 

  • Cui D (2007) Advances and prospects on biomolecules functionalized carbon nanotubes. J Nanosci Nanotechnol 7:1298–1314

    Article  CAS  PubMed  Google Scholar 

  • Du D, Huang X, Cai J, Zhang AD (2007) Comparison of pesticide sensitivity by electrochemical test based on acetylcholinesterase biosensor. Biosens Bioelectron 23:285–289

    Article  CAS  PubMed  Google Scholar 

  • Du D, Wang M, Cai J, Tao Y, Tu H, Zhang A (2008) Immobilization of acetycholinesterase based on the controllable adsorption of carbon nanotubes onto an alkanethiol monolayer for carbaryl sensing. Analyst 133:1790–1795

    Article  CAS  PubMed  Google Scholar 

  • Dyk JSV, Pletschke B (2011) Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment. Chemosphere 82:291–307

    Article  PubMed  CAS  Google Scholar 

  • Evtugyn GA, Shamagsumova RV, Padnya PV, Stoikov II, Antipin IS (2014) Cholinesterase Sensor Based on Glassy Carbon Electrode Modified With Ag Nanoparticles Decorated With Macrocyclic Ligands. Talanta 127: 9–17

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Ramos C, Satinsky D, Smidova B, Solich P (2014) Analysis of trace organic compounds in environmental, food and biological matrices using large-volume sample injection in column-switching liquid chromatography. Trends Anal Chem 62:69–85

    Article  CAS  Google Scholar 

  • Fukuto TR (1990) Mechanism of action of organophosphorus and carbamate insecticides. Environ Health Perspect 87:245–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill I, Ballesteros A (2000) Bioencapsulation within synthetic polymers (Part 1): sol-gel encapsulated biologicals. Tibtech 18:282–296

    Article  CAS  Google Scholar 

  • Gogol EV, Evtugyn GA, Marty JL, Budnikov H, Winter VG (2000) Amperometric biosensors based on nafion coated screen printed electrodes for the determination of cholinesterase inhibitors. Talanta 5:379–389

    Article  Google Scholar 

  • Gong J, Wang L, Zhang L (2009a) Electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto Au–polypyrrole interlaced network-like nanocomposite. Biosens Bioelectron 24:2285–2288

    Article  CAS  PubMed  Google Scholar 

  • Gong J, Liu T, Song D, Zhang X, Zhang L (2009b) One step fabrication of three-dimensional porous calcium carbonate-chitosan composite film as the immobilization matrix of acetylcholinesterase and its biosensor on pesticides. Electrochem Commun 11:1873–1876

    Article  CAS  Google Scholar 

  • Guilbault GG, Pravda M, Kreuzer M (2004) Biosensors-42 years and counting. Anal Lett 37:14481–14496

    Article  Google Scholar 

  • Hart KA, Pimentel D (2002) Environmental and economic costs of pesticide use. In: Pimentel D (ed) Encyclopedia of pest management. Marcel Dekker, New York, pp 237–239

    Google Scholar 

  • Haruyama T (2003) Micro- and nanobiotechnology for biosensing cellular responses. Adv Drug Deliv Rev 55:393–401

    Article  CAS  PubMed  Google Scholar 

  • Hatefi-Mehriajrdi A (2013) Bienzyme self-assembled monolayer on gold electrode: an amperometric biosensor for carbaryl determination. Electrochim Acta 114:394–402

    Article  CAS  Google Scholar 

  • He X, Yuan R, Chai Y, Shi Y (2008) A sensitive amperometric immunosensor for carcinoembryonic antigen detection with porous nanogold film and Nano-Au/chitosan composite as immobilization matrix. J Biochem Biophys Methods 70:823–829

    Article  CAS  PubMed  Google Scholar 

  • IARC (1976) Some carbamates, thiocarbamates and carbazides. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • IARC (2003) Monographs on the evaluation of carcinogenic risk to human. International Agency for Research on Cancer, vols. 5–53. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • Ivanov AN, Evtugyn GA, Gyurcsanyi RE, Toth K, Budnikov HC (2000) Comparative investigation of electrochemical cholinesterase biosensors for pesticide determination. Anal Chim Acta 404:55–65

    Article  CAS  Google Scholar 

  • Ivanov AN, Evtugyn G, Budnikov H, Ricci F, Moscone D, Palleschi G (2003) Cholinesterase sensors based on screen-printed electrodes for detection of orgaophoshorus and carbammic acid pesticides. Anal Bioanal Chem 377:624–631

    Article  CAS  PubMed  Google Scholar 

  • Jain KK (2003) Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Rev Mol Diagn 3:153–161

    Article  CAS  PubMed  Google Scholar 

  • Jha N, Ramaprabhu S (2010) Development of Au nanoparticles dispersed carbon nanotube-based biosensor for the detection of paraoxon. Nanoscale 2:806–810

    Article  CAS  PubMed  Google Scholar 

  • Joshi KA, Tang J, Haddon R, Wang J, Chen W, Mulchandani A (2005) A disposable biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode. Electroanalysis 17:54–58

    Article  CAS  Google Scholar 

  • Kandimalla VB, Tripathi VS, Ju H (2006) Immobilization of biomolecules in sol-gels: biological and analytical applications: critical review. Anal Chem 36:73–106

    CAS  Google Scholar 

  • Kerman K, Saito M, Tamiya E, Yamamura S, Takamura Y (2008) Nanomaterial-based electrochemical biosensors for medical applications. Trends Anal Chem 27:585–592

    Article  CAS  Google Scholar 

  • Kestwal RM, Bagal-Kestwal D, Chiang BH (2015) Fenugreek hydrogeleagarose composite entrapped gold nanoparticles for acetylcholinesterase based biosensor for carbamates detection. Anal Chim Acta 886:143–150

    Article  CAS  PubMed  Google Scholar 

  • Kuswandi B, Fikriyah CI, Gani AA (2008) An optical fiber biosensor for chlorpyrifos using a single sol-gel film containing acetylcholinesterase and bromothymol blue. Talanta 74:613–618

    Article  CAS  PubMed  Google Scholar 

  • Lei Y, Chen W, Mulchandani A (2006) Review microbial biosensors. Anal Chim Acta 568:200–210

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Shi L, Han G, Xiao Y, Zhou W (2017) Electrochemical biosensing of carbaryl based on acetylcholinesterase immobilized onto electrochemically inducing porous graphene oxide network. Sens Actuators B 238:945–953

    Article  CAS  Google Scholar 

  • Liang LZ, Qi JS, Mu WJ, Chen ZG (2008) Biomolecules/gold nanowires-doped sol-gel film for label-free electrochemical immunoassay of testosterone. J Biochem Biophys Methods 70:1156–1162

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Liu CC, Chou TC (2004) Amperometric acetylcholine sensor catalyzed by nickel anode electrode. Biosens Bioelectron 20:9–14

    Article  CAS  PubMed  Google Scholar 

  • Lin TJ, Huang KT, Liu CY (2006) Determination of organophosphorous pesticides by a novel biosensor based on localized surface plasmon resonance. Biosens Bioelectron 22:513–518

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Lin Y (2006) Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Anal Chem 78:835–843

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Su H, Qu X, Ju P, Cui L, Ai S (2011) Acetylcholinesterase biosensor based on 3-carboxyphenylboronic acid/reduced graphene oxide–gold nanocomposites modified electrode for amperometric detection of organophosphorus and carbamate pesticides. Sens Actuators B 160:1255–1261

    Article  CAS  Google Scholar 

  • Liu Y, Wang G, Li C, Wang M, Yang L (2014) A novel acetylcholinesterase biosensor based on carboxylic graphene coated with silver nanoparticles for pesticide detection. Mater Sci Eng C 35:253–258

    Article  CAS  Google Scholar 

  • Liu B, Xiao B, Cui L (2015a) Electrochemical analysis of carbaryl in fruit samples on graphene oxide-ionic liquid composite modified electrode. J Food Compos Anal 40:14–18

    Article  CAS  Google Scholar 

  • Liu Q, Fei A, Huan J, Mao H, Wang K (2015b) Effective amperometric biosensor for carbaryl detection based on covalent immobilization acetylcholinesterase on multiwall carbon nanotubes/graphene oxide nanoribbons nanostructure. J Electroanal Chem 740:8–13

    Article  CAS  Google Scholar 

  • Margolin AL (1996) Novel crystalline catalysts. Trends Biotechnol 14:223–230

    Article  CAS  Google Scholar 

  • Meder F, Hintz H, Koehler Y, Schmidt MM, Treccani L, Dringen R, Rezwan K (2013) Adsorption and orientation of the physiological extracellular peptide glutathione disulfide on surface functionalized colloidal alumina particles. Am Chem Soc 135:6307–6316

    Article  CAS  Google Scholar 

  • Merkoçi A (2013) Nanoparticles based electroanalysis in diagnostics applications. Electroanal 25(1):15–27

    Article  CAS  Google Scholar 

  • Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158

    Article  CAS  Google Scholar 

  • Nunes GS, Jeanty G, Marty JL (2004) Enzyme immobilization procedures on screen-printed electrodes used for the detection of anticholinesterase pesticides: comparative study. Anal Chim Acta 523:107–115

    Article  CAS  Google Scholar 

  • Pohanka M, Kuka K, Jun D (2007) Amperometric biosensor for pesticide methamidorphos assay. Acta Medica (Hradec Kralove) 50:239–241

    Article  CAS  Google Scholar 

  • Qu Y, Sun Q, Xiao F, Shi G, Jin L (2010) Layer-by-layer self-assembled acetylcholinesterase/pamam-Au on CNTs modified electrode for sensing pesticides. Bioelectrochemistry 77:139–144

    Article  CAS  PubMed  Google Scholar 

  • Ray SC (2015) Application of Graphene and Graphene-Oxide Based Nanomaterials. Waltham, MA: Elsevier

    Google Scholar 

  • Ribeiro FWP, Lucas FWDS, Mascaro LH, Morais S, Casciano PN, de Lima-Neto P, Correia AN (2016) Electroanalysis of formetanate hydrochloride by a cobalt phthalocyanine functionalized multiwalled carbon nanotubes modified electrode: characterization and application in fruits. Electrochim Acta 194:187–198

    Article  CAS  Google Scholar 

  • Salam MA, Makki MSI, Abdelaal MYA (2011) Preparation and characterization of multi-walled carbon nanotubes/chitosan nanocomposite and its application for the removal of heavy metals from aqueous solution. J Alloys Compd 509:2582–2587

    Article  CAS  Google Scholar 

  • Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30:489–511

    Article  CAS  PubMed  Google Scholar 

  • Schulte-Oehlmann U, Oehlmann J, Keil F (2011) Before the curtain falls: endocrine-active pesticides—a German containation legacy. Rev Environ Contam Toxicol 213:137–159

    CAS  PubMed  Google Scholar 

  • Shalini J, Sankaran KJ, Lee CY, Tai NH, Lin IN (2014) An amperometric urea bisosensor based on covalent immobilization of urease on N2 incorporated diamond nanowire electrode. Biosens Bioelectron 56:64–70

    Article  CAS  PubMed  Google Scholar 

  • Shamagsumova RV, Shurpik DN, Padnya PL, Stoikov II, Evtugyn GA (2015) Acetylcholinesterase Biosensor for Inhibitor Measurements Based on Glassy Carbon Electrode Modified With Carbon Black and Pillar[5]arene. Talanta 144:559–568

    Article  CAS  PubMed  Google Scholar 

  • Shim J, Kim GY, Moon SH (2011) Covalent co-immobilization of glucose oxidase and ferrocenedicarboxylic acid for an enzymatic biofuel cell. J Electroanal Chem 653:14–20

    Article  CAS  Google Scholar 

  • Sinha R, Ganesana M, Andreescu S, Stanciu L (2010) AChE biosensor based on zinc oxide sol-gel for the detection of pesticides. Anal Chim Acta 661:195–199

    Article  CAS  PubMed  Google Scholar 

  • Smith AG, Gangolli SD (2002) Organochlorine chemicals in seafood: occurence and health concerns. Food Chem Toxicol 40:767–779

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Chen J, Sun M, Gong C, Shen Y, Song Y, Wang L (2016) A simple electrochemical biosensor based on AuNPs/MPS/Au electrode sensing layer for monitoring carbamate pesticides in real samples. J Hazard Mater 304:103–109

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Luo Y, Zhu C, Li H, Du D, Lin Y (2016a) Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosens Bioelectron 76:195–212

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Chen J, Sun M, Gong C, Shen Y, Song Y, Wang L (2016b) A simple electrochemical biosensor based on AuNPs/MPS/Au electrode sensing layer for monitoring carbamate pesticides in real samples. J Hazard Mater 304:103–109

    Article  CAS  PubMed  Google Scholar 

  • Suarez-Martinez I, Grobert N, Ewels CP (2012) Encyclopedia of Carbon Nanoforms. Advances in Carbon Nanomaterials: Science and Applications. Pan Stanford Publishing: Singapore

    Google Scholar 

  • Suprun E, Evtugyn G, Budnikov H, Ricci F, Moscone D, Palleschi G (2003) Acetylcholinesterase sensor based on screen printed carbon electrode modified with prussian blue. Anal Bioanal Chem 383:597–604

    Article  CAS  Google Scholar 

  • Svancara I, Vytras K, Kalcher K, Walcarius A, Wang J (2009) Carbon paste electrodes in facts, numbers, and notes: a review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis 21:7–28

    Article  CAS  Google Scholar 

  • Tamayo J, Kosaka P M, Ruz JJ, San Paulo A, Calleja M (2013) Biosensors based on nanomechanical systems. Chem Soc Rev 42:1287–1311

    Article  CAS  PubMed  Google Scholar 

  • Tegeler T, El Rassi Z (2001) Capillary electrophoresis and electrochromatography of pesticides and metabolites. Electrophoresis 22:4281–4293

    Article  CAS  PubMed  Google Scholar 

  • Valentini F, Orlanducci S, Terranova ML, Amine A, Palleschi G (2004) Carbon nanotubes as electrode materials for the assembling of new electrochemical biosensors. Sensor Actuat: B Chem. 100(1):117–125

    Article  CAS  Google Scholar 

  • Vandeput M, Parsajoo C, Vanheuverzwijn J, Patris S, Yardim Y, le Jeune A, Sarakbi A, Mertens D, Kauffmann JM (2015) Flow-through enzyme immobilized amperometric detector for the rapid screening of acetylcholinesterase inhibitors by flow injection analysis. J Pharm Biomed Anal 102:267–275

    Article  CAS  PubMed  Google Scholar 

  • Verma N, Bhardwaj A (2015) Biosensor technology for pesticides—a review. Appl Biochem Biotechnol 175:3093–3119

    Article  CAS  PubMed  Google Scholar 

  • Vo-Dinh T, Cullum BM, Stokes DL (2001) Nanosensors and biochips: frontiers in biomolecular diagnostics. Sens Actuators B Chem 74:2–11

    Article  CAS  Google Scholar 

  • Waibel M, Schulze H, Huber N, Bachmann TT (2006) Screen-printed bienzymatic sensor based on sol-gel immobilised Nippostrongylus brasilensis acetylcholinesterase and a cytocrome P450 BM-3 (CYP102-A1) mutant. Biosens Bioelecton 21:1132–1140

    Article  CAS  Google Scholar 

  • Wang X, Zhao X, Liu X, Li Y, Fu L, Hu J, Huang C (2008) Homogenous liquid-liquid extraction combined with gas chromatgraphy-electron capture detector for the determination of three pesticide residues in soils. Anal Chim Acta 620:162–169

    Article  CAS  PubMed  Google Scholar 

  • Wong SS, Wong LJC (1992) Chemical crosslinking and the stabilization of proteins and enzymes. Enzyme Microb Technol 14:866–874

    Article  CAS  PubMed  Google Scholar 

  • Yang SS, Goldsmith AI, Smetena I (1996) Review: recent advances in the residue analysis of n-methylcarbamate pesticides. J Chromatogr A 754:3–16

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Wang G, Liu Y, Wang M (2013) Development of a biosensor based on immobilization of acetylcholinesterase on NiO nanoparticles–carboxylic graphene–nafion modified electrode for detection of pesticides. Talanta 113:135–141

    Article  CAS  PubMed  Google Scholar 

  • YanRong L, ZhiYong G, YanFen L, Qian L, JianChun B, ZhiHui D, Min H (2010) Immobilization of acetylcholinesterase on one-dimensional gold nanoparticles for detection of organophosphorous insecticides. Science China Chem 53:820–825

    Article  CAS  Google Scholar 

  • Zejli H, Hidalgo-Hidalgo de Cisneros JL, Naranjo-Rodriguez I, Liu B, Temsamani KR, Marty JL (2008) Alumina sol-gel/sonogel-carbon electrode based on acetylcholinesterase for detection of organophosphorus pesticides. Talanta 77:217–221

    Article  CAS  PubMed  Google Scholar 

  • Zhai C, Sun X, Zhao W, Gong Z, Wang X (2013) Acetylcholinesterase biosensor based on chitosan/prussian blue/multiwall carbon/hollow gold nanospheres nanocomposite film by one-step electrodeposition. Biosens Bioelectron 42:124–130

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Ji X, Wang B, Wang N, Li X, Ni R, Ren J (2015) An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles-ß-cyclodextrin/prussian blue-chitosan nanocomposites for organophosphorus pesticides detection. Biosens Bioelectron 65:23–30

    Article  CAS  PubMed  Google Scholar 

  • Zhang YY, Arugula MA, Wales M, Wild J, Simonian AL (2015) A Novel Layer by Layer Assembled Multi-Enzyme/CNT Biosensor for Discriminative Detection Between Organophosphorus and Non-Organophosphorus Pesticides. Biosens Bioelectron 67:287–295

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Liu Z, Jing Y, Li J, Zhan H (2015) An acetylcholinesterase biosensor based on ionic liquid functionalized graphene-gelatin-modified electrode for sensitive detection of pesticides. Sens Actuators B 210:389–397

    Article  CAS  Google Scholar 

  • Zhou Q, Yang L, Wang G, Yang Y (2013) Acetylcholinesterase biosensor based on SnO2 nanoparticles–carboxylic graphene–nafion modified electrode for detection of pesticides. Biosens Bioelectron 49:25–31

    Article  PubMed  CAS  Google Scholar 

  • Zou MQ, Yang R, Wang DN, Li JF, Jin H (2006) A novel immobilized cholinesterase for on-site screening of organophosphate and carbamate compounds. Pestic Biochem Physiol 86:162–166

    Article  CAS  Google Scholar 

  • Zucca P, Sanjust E (2014) Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules 19:14139–14194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by grants from the Ministry of Education Malaysia, Fundamental Research Grant Scheme (FRGS) (No. FRGS/1/2014/SG05/UMS/02/4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shafiquzzaman Siddiquee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samsidar, A., Siddiquee, S. (2019). Acetylcholinesterase (AChE) Biosensors for Determination of Carbamate Pesticides. In: Siddiquee, S., Melvin, G., Rahman, M. (eds) Nanotechnology: Applications in Energy, Drug and Food. Springer, Cham. https://doi.org/10.1007/978-3-319-99602-8_18

Download citation

Publish with us

Policies and ethics