Skip to main content

Improvement of Food Packaging Based on Functional Nanomaterial

  • Chapter
  • First Online:

Abstract

Nanotechnology offers many tremendous improvements for a better life. It can be applied to improve products, wealth, health, and quality of life, including being more eco-friendly, due to its nanoscale size. It could look impossible sometimes, that nanoscale structures could not only present but could also have a big impact in various sectors that could be important to our daily life. Besides a tremendous impact in many sectors, nanomaterials are still infants in the food sector itself. However, as the results of advanced nanomaterial functional properties that can be used to improve packaging materials properties and functions, thus, even in it infancy, functional nanomaterials are being employed increasingly in the food packaging industry.

Here, comprehensive review of recent advance in the development of food packaging based on functional nanomaterial has been described and discussed. Covered issues include application of nanomaterial in food packaging, i.e. physical improved packaging for increasing mechanical strength, barrier properties, flexibility and stability; biochemical improved packaging for biocompatible, biodegradable, low-waste and eco-friendly; improved packaging with active functions, e.g. oxygen scavenging and antimicrobials; improved packaging with smart or intelligent functions, e.g. nanosensors for freshness, contaminants and monitoring of food packaging integrity or conditions. Furthermore, issues on human health and environment related to this improvement of food packaging with functional nanomaterial are discussed briefly, which are most likely to enjoy consumer preference and regulatory attention in the near future. The chapter ended with a short overview of the future trend of nano-packaging for various food applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abad E, Zampolli S, Marco S (2007) Flexible tag microlab development: gas sensors integration in RFID flexible tags for food logistic. Sens Actuators B 127(1):2–7

    Article  CAS  Google Scholar 

  • Abad E, Palacio F, Nuin M, González de Zárate A, Juarros A, Gómez JM, Marco S (2009) RFID smart tag for traceability and cold chain monitoring of foods: demonstration in an intercontinental fresh fish logistic chain. J Food Eng 93(4):394–399

    Article  Google Scholar 

  • Adame D, Beall GW (2009) Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion. Appl Clay Sci 42:545–552

    Article  CAS  Google Scholar 

  • Aguzzi C, Cerezo P, Viseras C, Caramella C (2007) Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci 36:22–36

    Article  CAS  Google Scholar 

  • Ahuja T, Mir IA, Kumar D, Rajesh (2007) Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 28:791–805

    Article  CAS  PubMed  Google Scholar 

  • Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mat Sci Eng R 28(1–2):1–63

    Article  Google Scholar 

  • Alexandre B, Langevin D, Mederic P, Aubry T, Couderc H, Nguyen QT et al (2009) Water barrier properties of polyamide 12/montmorillonite nanocomposite membranes: structure and volume fraction effects. J Membr Sci 328(1–2):186–204

    Article  CAS  Google Scholar 

  • An J, Zhang M, Wang S, Tang J (2008) Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. Lebenson Wiss Technol 41(6):1100–1107

    Article  CAS  Google Scholar 

  • Anpo M, Kishiguchi S, Ichihashi Y, Takeuchi M, Yamashita H, Ikeue K et al (2001) The design and development of second-generation titanium oxide photocatalysts able to operate under visible light irradiation by applying a metal ion-implantation method. Res Chem Interm 27(4–5):459–467

    Article  CAS  Google Scholar 

  • Arshak K, Adley C, Moore E, Cunniffe C, Campion M, Harris J (2007) Characterisation of polymer nanocomposite sensors for quantification of bacterial cultures. Sens Actuators B 126:226–231

    Article  CAS  Google Scholar 

  • Asadi G, M Mousavi (2006) Application of nanotechnology in food packaging. Available at http://iufost.edpsciences.org

  • Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93:467–474

    Article  CAS  Google Scholar 

  • Avena-Bustillos RJ, Krochta JM, Saltveit ME (1997) Water vapour resistance of red delicious apples and celery sticks coated with edible caseinate-acetylated monoglyceride films. J Food Sci 62(2):51–354

    Article  Google Scholar 

  • Baldwin EA, Nisperos MO, Chen X, Hagenmaier RD (1996) Improving storage life of cut apples and potato with edible coating. Post Biol Technol 9(2):151–163

    Article  CAS  Google Scholar 

  • Bandyopadhyay S, Chen R, Giannelis EP (1999) Biodegradable organic–inorganic hybrids based on poly (L lactide). Polym Mater Sci Eng 81:159–160

    CAS  Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C et al (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53(1):52–62

    Article  CAS  PubMed  Google Scholar 

  • Bertini F, Canetti M, Audisio G, Costa G, Falqui L (2006) Characterization and thermal degradation of polypropylene–montmorillonite nanocomposites. Polym Degrad Stab 91:600–605

    Article  CAS  Google Scholar 

  • Bharadwaj RK (2001) Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 34:9189–9192

    Article  CAS  Google Scholar 

  • Bharadwaj RK, Mehrabi AR, Hamilton C, Murga MF, Chavira A, Thompson AK (2002) Structure-property relationships in cross-linked polyestereclay nanocomposites. Polymer 43:3699–3705

    Article  CAS  Google Scholar 

  • Brody AL (2003) “Nano, nano” food packaging technology. Food Technol 57(1):52–54

    Google Scholar 

  • Brody AL (2006) Nano and food packaging technologies converge. Food Technol 60(3):92–94

    Google Scholar 

  • Brody AL (2007) Case studies on nanotechnologies for food packaging. Food Technol 07:102–107

    Google Scholar 

  • Cabedo L, Gimenez E, Lagaron JM, Gavara R, Saura JJ (2004) Development of EVOH–kaolinite nanocomposites. Polymer 45(15):5233–5238

    Article  CAS  Google Scholar 

  • Cabedo L, Feijoo JL, Villanueva MP, Lagaron JM, Gimenez E (2006) Optimization of biodegradable nanocomposites based on a PLA/PCL blends for food packaging applications. Macromol Symp 233:191–197

    Article  CAS  Google Scholar 

  • Cagri A, Ustunol Z, Ryser ET (2004) Antimicrobial edible films and coatings. J Food Prot 67:833–848

    Article  CAS  PubMed  Google Scholar 

  • Chawengkijwanich C, Hayata Y (2008) Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microbiol 123(3):288–292

    Article  CAS  PubMed  Google Scholar 

  • Cha D, Chinnan M (2004) Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr 44:223–237

    Article  CAS  PubMed  Google Scholar 

  • Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335

    Article  CAS  Google Scholar 

  • Chang J-H, Uk-An Y, Sur GS (2003) Poly (lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability. J Polym Sci B 41:94–103

    Article  CAS  Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Additives Cont 25(3):241–258

    Article  CAS  Google Scholar 

  • Chen GX, Hao GJ, Guo TY, Song MD, Zhang BH (2004) Crystallization kinetics of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/clay nanocomposites. J Appl Polym Sci 93:655–661

    Article  CAS  Google Scholar 

  • Chen B, Evans JRG (2005) Thermoplastic starch-clay nanocomposites and their characteristics. Carbohydr Polym 61(4):455–463

    Article  CAS  Google Scholar 

  • Cheng Q, Li C, Pavlinek V, Saha P, Wang H (2006) Surface-modified antibacterial TiO2/Ag+ nanoparticles: preparation and properties. Appl Surf Sci 252:4154–4160

    Article  CAS  Google Scholar 

  • Choi HJ, Kim JH, Kim J (1997) Mechanical spectroscopy studies on biodegradable synthetic and biosynthetic aliphatic polyesters. Macromol Symp 119:149–155

    Article  CAS  Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L et al (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262

    Article  CAS  Google Scholar 

  • Commission Regulation (EU) No. 10/2011 of 14 of January 2011 on plastic material and articles intended to come in contact with food. Official Journal of the European Union

    Google Scholar 

  • Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2014) Evaluation and simulation of silver and copper nanoparticle migration from polyethylene nanocomposites to food and an associated exposure assessment. J Agric Food Chem 62(6):1403–1411

    Article  CAS  PubMed  Google Scholar 

  • Cyras VP, Manfredi LB, Ton-That MT, Vazquez A (2008) Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydr Polym 73:55–63

    Article  CAS  Google Scholar 

  • Darder M, Colila M, Ruiz-Hitky E (2003) Biopolymer-clay nanocomposites based on chitosan intercalated in montmorllonite. Chem Mater 15:3774–378

    Article  CAS  Google Scholar 

  • Damm C, Munstedt H, Rosch A (2007) Long-term antimicrobial polyamide 6/silver-nanocomposites. J Mater Sci 42(15):6067–6073

    Article  CAS  Google Scholar 

  • Damm C, Munstedt H, Rosch A (2008) The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites. Mater Chem Phys 108:61–66

    Article  CAS  Google Scholar 

  • Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A (2015) Nanotechnology in agrofood: from field to plate. Food Res Int 69:381–400

    Article  Google Scholar 

  • Dean K, Yu L, Wu DY (2007) Preparation and characterization of mel-textruded thermoplastic starch/clay nanocomposites. Compos Sci Technol 67:413–421

    Article  CAS  Google Scholar 

  • Decher G, Schlenoff JB (2003) Multilayer thin films: sequential assembly of nanocomposite materials. Wiley-VCH, Weinheim, p 543

    Google Scholar 

  • De Carvalho AJF, Curvelo AAS, Agnelli JAM (2001) A first insight on composites of thermoplastic starch and kaolin. Carbohydr Polym 45:189–194

    Article  Google Scholar 

  • Del Nobile MA, Conte A, Buonocore GG, Incoronato AL, Massaro A, Panza O (2009) Active packaging by extrusion processing of recyclable and biodegradable polymers. J Food Eng 93(1):1–6

    Article  CAS  Google Scholar 

  • Di Y, Iannace S, Di Maio ED, Nicolais L (2003) Nanocomposites by melt intercalation based on polycaprolactone and organoclay. J Polym Sci B 41:670–678

    Article  CAS  Google Scholar 

  • Divsalar E, Tajik H, Moradi M, Forough M, Lotfi M, Kuswandi B (2018) Characterization of cellulosic paper coated with chitosan-zinc oxide nanocomposite containing nisin and its application in packaging of UF cheese. J Food Eng 111(2012):21–27

    Google Scholar 

  • Doi Y, Steinbuechel A (2002) Polyesters, III, Applications and commercial products. In: Biopolymers, 4. Wiley-VCH, Weinheim

    Google Scholar 

  • Doyle ME (2006) Nanotechnology: a brief literature review. Available at http://www.wisc.xv.edu/fri/briefs/FRIBrief_Nanotech_Lit_Rev.pdf

  • Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Echegoyen Y, Nerín C (2013) Nanoparticle release from nano-silver antimicrobial food containers. Food Chem Toxicol 62:16–22

    Article  CAS  PubMed  Google Scholar 

  • El Amin A (2005) Consumers and regulators push food packaging innovation. Available at http://foodproductiondaily.com/news/ng.asp?n=63704

  • El Amin A (2007) Nanoscale particles designed to block UV light. FoodProductionDaily.com Europe. 18 October. Available at http://foodproductiondaily.com/news/ng.asp?id=80676

  • El Ghaouth AE, Arul J, Ponnampalam R, Boulet M (1991) Use of chitosan coating to reduce water loss and maintain quality of cucumber and bell pepper fruits. J Food Process Preserv 15:359–368

    Article  Google Scholar 

  • Frieder W (2010) Lichtenthaler “Carbohydrates as organic raw materials”. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim. https://doi.org/10.1002/14356007

    Book  Google Scholar 

  • Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1(1):1–21

    Article  CAS  Google Scholar 

  • Galdikas A, Mironas A, Senuliene V, Šetkus A, Zelenin D (2000) Response time based output of metal oxide gas sensors applied to evaluation of meat freshness with neural signal analysis. Sens Actuators B 69:258–265

    Article  CAS  Google Scholar 

  • Gelover S, Gomez LA, Reyes K, Leal MT (2006) A practical demonstration of water disinfection using TiO2 films and sunlight. Water Res 40:3274–3280

    Article  CAS  PubMed  Google Scholar 

  • Gonera A, Cornillon P (2002) Gelatinization of starch/gum/sugar system studied by using DSC, NMR and CSLM. Starch 54:508–516

    Article  CAS  Google Scholar 

  • Gorrasi G, Tortora M, Vittoria V, Galli G, Chiellini E (2002) Transport and mechanical properties of blends of poly (3-caprolactone) and a modified montmorillonite-poly (3-caprolactone) nanocomposite. J Polym Sci B 40:1118–1124

    Article  CAS  Google Scholar 

  • Gorrasi G, Tortora M, Vittoria V, Pollet E, Alexandre M, Dubois P (2004) Physical properties of poly (3-caprolactone) layered silicate nanocomposites prepared by controlled grafting polymerization. J Polym Sci B 42:1466–1475

    Article  CAS  Google Scholar 

  • Gu HW, Ho PL, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3:1261–1263

    Article  CAS  Google Scholar 

  • Guilbert S, Cuq B, Gontard N (1997) Recent innovations inedible and/or biodegradable packaging materials. Food Additives Cont 14(6):741–751

    Article  CAS  Google Scholar 

  • Gutierrez-Tauste D, Domenech X, Casan-Pastor N, Ayllon JA (2007) Characterization of methylene blue/TiO2 hybrid thin films prepared by the liquid phase deposition (LPD) method: application for fabrication of light-activated colorimetric oxygen indicators. J Photochem Photobiol A Chem 187:45–52

    Article  CAS  Google Scholar 

  • Hankermeyer CR, Tjeerdema RS (1999) Polyhydroxybutyrate: plastic made and degraded by microorganisms. Rev Environ Contam Toxicol 159:1–24

    CAS  PubMed  Google Scholar 

  • Haynie DT, Zhang L, Zhao W, Rudra JS (2006) Protein-inspired multilayer nanofilms: science, technology and medicine. Nanomed Nanotechnol Biol Med 2:150–157

    Article  CAS  Google Scholar 

  • Hu AW, Fu ZH (2003) Nanotechnology and its application in packaging and packaging machinery. Pack Eng 24:22–24

    CAS  Google Scholar 

  • Huang L, Li DQ, Lin YJ, Wei M, Evans DG, Duan X (2005) Controllable preparation of nano-MgO and investigation of its bactericidal properties. J Inorg Biochem 99:986–993

    Article  CAS  PubMed  Google Scholar 

  • Ishiaku US, Pang KW, Lee WS, Ishak ZAM (2002) Mechanical properties and enzymic degradation of thermoplastic and granular sago starch filled poly (3-caprolactone). Eur Polym J 38:393–401

    Article  CAS  Google Scholar 

  • Jawahar P, Balasubramanian M (2006) Preparation and properties of polyesterbased nanocomposite gel coat system. J Nanomater 4 [article ID 21656]

    Google Scholar 

  • Johnston JH, Borrmann T, Rankin D, Cairns M, Grindrod JE, McFarlane A (2008) Nano-structured composite calcium silicate and some novel applications. Cur App Phys 8(3–4):504–507

    Article  Google Scholar 

  • Joseph T, Morrison M (2006) Nanotechnology in agriculture and food. www.nanoforum.org/nf06~modul~showmore~folder~99999~scid~377~.html?action=longview_publication

  • Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673

    Article  CAS  PubMed  Google Scholar 

  • Kaplan DL (1998) Biopolymers from renewable resources. Springer, Berlin

    Book  Google Scholar 

  • Kim M, Pometto OR III (1994) Food packaging potential of some novel degradable starch- polyethylene plastics. J Food Protec 57:1007–1012

    Article  CAS  Google Scholar 

  • Kim B, Kim D, Cho D, Cho S (2003) Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere 52(1):277–281

    Article  CAS  PubMed  Google Scholar 

  • Kim TY, Lee YH, Park KH, Kim SJ, Cho SY (2005) A study of photocatalysis of TiO2 coated onto chitosan beads and activated carbon. Res Chem Interm 31(4–6):343–358

    Article  CAS  Google Scholar 

  • Kirwan MJ, Strawbridge JW (2003) Plastics in food packaging. In: Coles R, McDowell D, Kirwan MJ (eds) Food packaging technology. Blackwell, London, pp 174–240

    Google Scholar 

  • Koo OM, Rubinstein I, Onyuksel H (2005) Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomed Nanotechnol Biol Med 1:193–212

    Article  CAS  Google Scholar 

  • Kumar R, Munstedt H (2005) Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26:2081–2088

    Article  CAS  PubMed  Google Scholar 

  • Kuswandi B (2017) Environmental friendly food nano-packaging. Environ Chem Lett 15:205–221. https://doi.org/10.1007/s10311-017-0613-7

    Article  CAS  Google Scholar 

  • Kuswandi B, Wicaksono Y, Jayus AA, Heng LY, Ahmad M (2011) Smart packaging: sensors for monitoring of food quality and safety. Sens Inst Food Qual Safe 5:137–146

    Article  Google Scholar 

  • Kuswandi BJ, Restanty A, Abdullah A, Heng LY, Ahmad M (2012) A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Cont 25:184

    Article  CAS  Google Scholar 

  • Lagaron JM, Cabedo L, Cava D, Feijoo JL, Gavara R, Gimenez E (2005) Improving packaged food quality and safety. Part 2: nanocomposites. Food Additives Cont 22(10):994–998

    Article  CAS  Google Scholar 

  • Lee CH, An DS, Park HJ, Lee DS (2003) Wide spectrum antimicrobial packaging materials incorporating nisin and chitosan in the coating. Pack Technol Sci 16:99–106

    Article  CAS  Google Scholar 

  • Lee SR, Park HM, Lim HL, Kang T, Li X, Cho WJ (2002) Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites. Polymer 43:2495–2500

    Article  CAS  Google Scholar 

  • Lee SK, Sheridan M, Mills A (2005) Novel UV-activated colorimetric oxygen indicator. Chem Mater 17(10):2744–2751

    Article  CAS  Google Scholar 

  • Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 61:1–8

    Article  CAS  Google Scholar 

  • Li B, Rozas J, Haynie DT (2006) Structural stability of polypeptide nanofilms under extreme conditions. Biotechnol Prog 22:111–117

    Article  PubMed  CAS  Google Scholar 

  • Li H, Li F, Wang L, Sheng J, Xin Z, Zhao L et al (2009) Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Food Chem 114(2):547–552

    Article  CAS  Google Scholar 

  • Liao F, Chen C, Subramanian V (2005) Organic TFTs as gas sensors for electronic nose applications. Sens Actuators B 107(2):849–855

    Article  CAS  Google Scholar 

  • Lim ST, Hyun YH, Choi HJ, Jhon MS (2002) Synthetic biodegradable aliphatic polyester/montmorillonite nanocomposites. Chem Mater 14:1839–1844

    Article  CAS  Google Scholar 

  • Liu W, Yang H, Wang Z, Dong L, Liu J (2002) Effect of nucleating agents on the crystallization of poly(3-hydroxybutyratecohydroxy valerate). J Appl Polym Sci 86:2145–2152

    Article  CAS  Google Scholar 

  • Lin YJ, Li DQ, Wang G, Huang L, Duan X (2005) Preparation and bactericidal property of MgO nanoparticles on c-Al2O3. J Mater Sci Mater Med 16:53–56

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Rubio A, Gavara R, Lagaron JM (2006) Bioactive packaging: turning foods into healthier foods through biomaterials. Trends Food Sci Technol 17:567–575

    Article  CAS  Google Scholar 

  • Lotfi M, Tajik H, Moradi M, Forough M, Divsalar E, Kuswandi B (2018) Nanostructured chitosan/monolaurin film: preparation, characterization and antimicrobial activity against Listeria monocytogenes on ultrafiltered white cheese. Lebenson Wiss Technol 92:576–583. https://doi.org/10.1016/j.lwt.2018.03.020

    Article  CAS  Google Scholar 

  • Luduena LN, Alvarez VA, Vasquez A (2007) Processing and microstructure of PCL/clay nanocomposites. Mater Sci Eng A:121–129

    Article  CAS  Google Scholar 

  • Luo PG, Stutzenberger FJ (2008) Nanotechnology in the detection and control of microorganisms. In: Laskin AI, Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 63. Elsevier, London, pp 145–181

    Google Scholar 

  • Maness PC, Smolinski S, Blake DM, Huang Z, Wolfrum EJ, Jacoby WA (1999) Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl Environ Microbiol 65(9):4094–4098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mangiacapra P, Gorrasi G, Sorrentino A, Vittoria V (2006) Biodegradable nanocomposites obtained by ball milling of pectin and montmorillonites. Carbohydr Polym 64:516–523

    Article  CAS  Google Scholar 

  • Maisanaba S, Pichardo S, Jordá-Beneyto M, Aucejo S, Cameán AM, Jos Á (2014a) Cytotoxicity and mutagenicity studies on migration extracts from nanocomposites with potential use in food packaging. Food Chem Toxicol 66:366–372

    Article  CAS  PubMed  Google Scholar 

  • Maisanaba S, Gutiérrez-Praena D, Puerto M, Llana-Ruiz-Cabello M, Pichardo S, Moyano R, Blanco A, Jordá-Beneyto M, Jos A (2014b) In vivo toxicity evaluation of the migration extract of an organomodified clay-poly(lactic) acid nanocomposite. J Toxicol Environ Health A 77(13):731–746

    Article  CAS  PubMed  Google Scholar 

  • Maiti P, Batt CA, Giannelis EP (2003) Renewable plastics: synthesis and properties of PHB nanocomposites. Polym Mater Sci Eng 88:58–59

    CAS  Google Scholar 

  • Marras SI, Kladi KP, Tsivintzelis I, Zuburtikudis I, Panayiotou C (2008) Biodegradable polymer nanocomposites: the role of nanoclays on the thermomechanical characteristics and the electrospun fibrous structure. Acta Biomater 4(3):756–765

    Article  CAS  PubMed  Google Scholar 

  • Mbhele ZH, Salemane MG, van Sittert CGCE, Nedeljkovic JM, Djokovic V, Luyt AS (2003) Fabrication and characterization of silver–polyvinyl alcohol nanocomposites. Chem Mater 15(26):5019–5024

    Article  CAS  Google Scholar 

  • McGlashan SA, Halley PJ (2003) Preparation and characterization of biodegradable starch-based nanocomposite materials. Poly Int 52:1767–1773

    Article  CAS  Google Scholar 

  • Miller G, Senjen R (2008). Out of the laboratory and on to our plates—nanotechnology in food and agriculture. Available at http://www.foeeurope.org/activities/nanotechnology/Documents/Nano_food_report.Pdf

  • Mills A, Doyle G, Peiro AM, Durrant J (2006) Demonstration of a novel, flexible, photocatalytic oxygen-scavenging polymer film. J Photochem Photobiol A Chem 177:328–331

    Article  CAS  Google Scholar 

  • Mills A, Hazafy D (2009) Nanocrystalline SnO2-based, UVB-activated, colourimetric oxygen indicator. Sens Actuators B 136(2):344–349

    Article  CAS  Google Scholar 

  • Mirzadeh A, Kokabi M (2007) The effect of composition and draw-down ratio on morphology and oxygen permeability of polypropylene nanocomposite blown films. Eur Polym J 43(9):3757–3765

    Article  CAS  Google Scholar 

  • Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers, and biocomposites. CRC, Boca Raton

    Book  Google Scholar 

  • Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155(13):377–384

    Article  CAS  PubMed  Google Scholar 

  • Moraru CI, Panchapakesan CP, Huang Q, Takhistov P, Liu S, Kokini JL (2003) Nanotechnology: a new frontier in Food Science. Food Technol 57:24–29

    Google Scholar 

  • Morillon V, Debeaufort F, Blond G, Capelle M, Voilley A (2002) Factors affecting the moisture permeability of lipid based edible films: a review. Crit Rev Food Sci Nutr 42:67–89

    Article  CAS  PubMed  Google Scholar 

  • Murariu M, Ferreira AS, Pluta M, Bonnaud L, Alexandre M, Duboi P (2008) Polylactide (PLA)–CaSO4 composites toughened with low molecular weight and polymeric ester-like plasticizers and related performances. Eur Polym J 44:3842–3852

    Article  CAS  Google Scholar 

  • Nachay K (2007) Analyzing nanotechnology. Food Technol 61(1):34–36

    Google Scholar 

  • Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Article  CAS  Google Scholar 

  • Nakayama A, Kawasaki N, Maeda Y, Arvanitoyannis I, Ariba S, Yamamoto N (1997) Study of biodegradability of poly (3-valerolactone-co-L-lactide). J Appl Polym Sci 66:741–748

    Article  CAS  Google Scholar 

  • Ogata N, Jimenez G, Kawai H, Ogihara T (1997) Structure and thermal/mechanical properties of poly (L-lactide)-clay blend. J Polym Sci B 35:389–396

    Article  CAS  Google Scholar 

  • Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci 27:87–133

    Article  CAS  Google Scholar 

  • Okamoto M, Morita S, Kim HY, Kotaka T, Tateyama H (2001) Dispersed structure change of smectic clay/poly(methyl methacrylate) nanocomposites by copolymerization with polar comonomer. Polymer 42:1201–1206

    Article  CAS  Google Scholar 

  • Oliva J, Paya P, Camara MA, Barba A (2007) Removal of famoxadone, fluquinconazole and trifloxystrobin residues in red wines: effects of clarification and filtration processes. J Environ Sci Health B 42:775–781

    Article  CAS  PubMed  Google Scholar 

  • Page K, Palgrave RG, Parkin IP, Wilson M, Savin SLP, Chadwick AV (2007) Titania and silver–titania composite films on glass-potent antimicrobial coatings. J Mater Chem 17(1):95–104

    Article  CAS  Google Scholar 

  • Park SH, Choi HJ, Lim ST, Shin TK, Jhon MS (2001) Viscoelasticity of biodegradable polymer blends of poly(3-hydroxybutyrate) and poly(ethylene oxide). Polymer 42:5737–5742

    Article  CAS  Google Scholar 

  • Park HW, Lee WK, Park CY, Cho WJ, Ha CS (2003) Environmentally friendly polymer hybrids: Part I. Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J Mater Sci 38:909–915

    Article  CAS  Google Scholar 

  • Paul M-A, Alexandre M, Degee P, Henrist C, Rulmont A, Dubois P (2003) New nanocomposite materials based on plasticized poly(L-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer 44:443–450

    Article  CAS  Google Scholar 

  • Pehanich M (2006) Small gains in processing, packaging. Food Proc 11:46–48

    Google Scholar 

  • Petersson L, Oksman K (2006) Preparation and properties of biopolymer based nanocomposite films using microcrystalline cellulose. In: Oksman K, Sain M (eds) Cellulose nanocomposites, processing, characterization and properties. ACS symposium series 938. Oxford University Press, Oxford, pp 132–150

    Chapter  Google Scholar 

  • Petersen K, Nielsen PV, Bertelsen G, Lawther M, Olsen MB, Nilssonk NH et al (1999) Potential of biobased materials for food packaging. Trends Food Sci Technol 10:52–68

    Article  CAS  Google Scholar 

  • Pitt CG (1990) Poly-caprolactone and its copolymers. In: Chasin M, Langer R (eds) Biodegradable polymers as drug delivery systems. Marcel Dekker, New York, pp 71–120

    Google Scholar 

  • Pluta M, Galeski A, Alexandre M, Paul M-A, Dubois P (2002) Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: structure and some physical properties. J Appl Polym Sci 86(6):1497–1506

    Article  CAS  Google Scholar 

  • Qi LF, Xu ZR, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700

    Article  CAS  PubMed  Google Scholar 

  • Rajesh, Takashima W, Kaneto K (2004) Amperometric phenol biosensor based on covalent immobilization of tyrosinase onto an electrochemically prepared novel copolymer poly(N-3-aminopropyl pyrrole-copolymer) film. Sens Actuators B 102:271–277

    Article  CAS  Google Scholar 

  • Ranjan S, Dasgupta N, Chakraborty AR, Samuel SM, Ramalingam C, Shanker R, Kumar A (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16(6):2464. https://doi.org/10.1007/s11051-014-2464-5

    Article  Google Scholar 

  • Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 33:338–356

    Article  CAS  Google Scholar 

  • Ravichandran R (2010) Nanoparticles in drug delivery: potential green nanobiomedicine applications. Int J Nanotechnol Biomed 1:108–130

    Google Scholar 

  • Reddy MP, Venugopal A, Subrahmanyam M (2007) Hydroxyapatite-supported Ag–TiO2 as Escherichia coli disinfection photocatalyst. Water Res 41:379–386

    Article  CAS  Google Scholar 

  • Roberts, R. 2007. The role of nanotechnology in brand protection. Packaging Digest, January 2007. Available at www.packagingdigest.com/articles/200701/34.p

  • Robertson GL (ed) (1993) Food packaging: principles and practice. Marcel Dekker, New York

    Google Scholar 

  • Robertson JMC, Robertson PKJ, Lawton LA (2005) A comparison of the effectiveness of TiO2 photocatalysis and UVA photolysis for the destruction of three pathogenic micro-organisms. J Photochem Photobiol A Chem 175(1):51–56

    Article  CAS  Google Scholar 

  • Reynolds, G., (2007). FDA recommends nanotechnology research, but not labelling FoodProductionDailycom News. 26 July 2007. Available at www.foodproductiondailyusa.com/news/ng.asp?n=78574

  • Rhim JW (2004) Increase in water vapor barrier property of biopolymer-based edible films and coatings by compositing with lipid materials. J Food Sci Biotechnol 13:528–535

    CAS  Google Scholar 

  • Rhim JW, Ng PKW (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47(4):411–433

    Article  CAS  PubMed  Google Scholar 

  • Russo GM, Nicolais V, Di Maio L, Montesano S, Incarnato L (2007) Rheological and mechanical properties of nylon 6 nanocomposites submitted to reprocessing with single and twin-screw extruders. Polym Degrad Stab 92(10):1925–1933

    Article  CAS  Google Scholar 

  • Sahl HG, Kordel M, Benz R (1987) Voltage-dependent depolarization of bacterial membranes and artificial Iipid bilayers by the peptide antibiotic nisin. Arch Microbiol 149:120–124

    Article  CAS  PubMed  Google Scholar 

  • Scott G (2000) Green polymers. Polym Degrad Stab 68:1–7

    Article  CAS  Google Scholar 

  • Scrinis G, Lyons K (2007) The emerging nanocorporate paradigm: nanotechnology and the transformation of nature, food and agrifood systems. Int J Sociol Food Agri 15(2):22–44

    Google Scholar 

  • Silvestre C, Duraccio D, Sossio C (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36(1):1766–1782

    Article  CAS  Google Scholar 

  • Sinha Ray S, Maiti P, Okamoto M, Yamada K, Ueda K (2002a) New polylactide/layered silicate nanocomposites. Preparation, characterization and properties. Macromolecules 35:3104–3110

    Article  CAS  Google Scholar 

  • Sinha Ray S, Yamada K, Okamoto M, Ogami A, Ueda K (2003) New polylactide/layered silicate nanocomposites. High-performance biodegradable materials. Chem Mater 15:1456–1465

    Article  CAS  Google Scholar 

  • Sinha Ray S, Yamada K, Okamoto M, Ueda K (2002b) New polylactide/layered silicate nanocomposite: a novel biodegradable material. Nano Lett 2:1093–1096

    Article  CAS  Google Scholar 

  • Sinha Ray S, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079

    Article  CAS  Google Scholar 

  • Smith JP, Hoshino J, Abe Y (1995) Interactive packaging involving sachet technology. In: Rooney ML (ed) Active food packaging. Blackie Academic and Professional, Glasgow, pp 143–173

    Chapter  Google Scholar 

  • Smits ALM, Ruhnau FC, Vliegenthart JFG (1998) Ageing of starch based systems as observed by FT-IR and solid state NMR spectroscopy. Starch 50(11–12):478–483

    Article  CAS  Google Scholar 

  • Siracusa V, Rocculi P, Romani S, Dalla RM (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643

    Article  CAS  Google Scholar 

  • Stewart CM, Tompkin RB, Cole MB (2002) Food safety: new concepts for the new millennium. Innov Food Sci Emer Technol 3:105–112

    Article  Google Scholar 

  • Steinbuchel A (2003) General aspects and special applications, Biopolymers. Wiley-VCH, Weinheim

    Google Scholar 

  • Stoimenov P, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

  • Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bionanocomposites for food packaging applications. Trends Food Sci Technol 18(2):84–95

    Article  CAS  Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89

    Article  CAS  PubMed  Google Scholar 

  • Tan W, Zhang Y, Szeto YS, Liao L (2008) A novel method to prepare chitosan/montmorillonite nanocomposites in the presence of hydroxyl-aluminum olygomeric cations. Compos Sci Technol 68(14):2917–2921

    Article  CAS  Google Scholar 

  • Tharanathan RN (2003) Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol 14(3):71–78

    Article  CAS  Google Scholar 

  • Tortora M, Vittoria V, Galli G, Ritrovati S, Chiellini E (2002) Transport properties of modified montmorillonite-poly(3-caprolactone) nanocomposites. Macromol Mater Eng 287(4):243–249

    Article  CAS  Google Scholar 

  • Trznadel M (1995) Biodegradable polymer materials. Int Poly Sci Technol 22(12):58–65

    Google Scholar 

  • Uyama H, Kuwabara M, Tsujimoto T, Nakano M, Usuki A, Kobayashi S (2003) Green nanocomposite from renewable resources: plant oil–clay hybrid materials. Chem Mater 15:2492–2494

    Article  Google Scholar 

  • Vermeiren L, Devlieghere F, Van Beest M, de Kruijf N, Debevere J (1999) Developments in the active packaging of foods. Trends Food Sci Technol 10:77–86

    Article  CAS  Google Scholar 

  • Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117–125

    Article  CAS  PubMed  Google Scholar 

  • Weber CJ (ed) (2000) Biobased packaging materials for the food industry. (Food Biopack Project, EU Directorate 12). The Royal Veterinary and Agricultural University, Frederiksberg

    Google Scholar 

  • Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71(9):107–116

    Article  CAS  Google Scholar 

  • Wilhelm HM, Sierakowski MR, Souza GP, Wypych F (2003) Starch film reinforced with mineral clay. Carbohydr Polym 52:101–110

    Article  CAS  Google Scholar 

  • Xiao-e L, Green ANM, Haque SA, Mills A, Durrant JR (2004) Light-driven oxygen scavenging by titania/polymer nanocomposite films. J Photochem Photobiol A Chem 162:253–259

    Article  CAS  Google Scholar 

  • Xu Y, Ren X, Hanna MA (2006) Chitosan/clay nanocomposite film preparation and characterization. J Appl Polym Sci 99(4):1684–1691

    Article  CAS  Google Scholar 

  • Yan SS, Gilbert JM (2004) Antimicrobial drug delivery in food animals and microbial food safety concerns: an overview of in vitro and in vivo factors potentially affecting the animal gut microflora. Adv Drug Deliv Rev 56:1497–1521

    Article  CAS  PubMed  Google Scholar 

  • Yoon SY, Deng Y (2006) Clayestarch composites and their application in papermaking. J Appl Polym Sci 100(2):1032–1038

    Article  CAS  Google Scholar 

  • Yu YH, Lin CY, Yeh JM, Lin WH (2003) Preparation and properties of poly (vinyl alcohol)–clay nanocomposite materials. Polymer 44(12):3553–3560

    Article  CAS  Google Scholar 

  • Zheng JP, Li P, Ma YL, Yao KD (2002) Gelatine montmorillonite hybrid nanocomposite. I. Preparation and properties. J App Poly Sci 86:1189–1194.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank DRPM, the Higher Education, Ministry of Science, Technology & Higher Education, the Republic of Indonesia for supporting this work via the Competency Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bambang Kuswandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuswandi, B., Moradi, M. (2019). Improvement of Food Packaging Based on Functional Nanomaterial. In: Siddiquee, S., Melvin, G., Rahman, M. (eds) Nanotechnology: Applications in Energy, Drug and Food. Springer, Cham. https://doi.org/10.1007/978-3-319-99602-8_16

Download citation

Publish with us

Policies and ethics