Skip to main content

The Relationship Between Pharmacogenomics and Pharmacokinetics and Its Impact on Drug Choice and Dosing Regimens in Pediatrics

  • Chapter
  • First Online:

Abstract

The concept of precision or personalized medicine in pediatrics is still in its infancy, and due to ethical and logistical constraints, it is difficult to conduct clinical studies in pediatric to obtain meaningful correlations between ontogeny and drug disposition. However, as a result of initiatives by the Food and Drug Administration (FDA) aimed toward incentivizing companies for conducting pediatric trials, knowledge on pediatric pharmacogenomics is slowly increasing. The information on pediatric pharmacogenomics is utilized to implement pharmacogenomic testing in pediatrics to allow clinicians to make an informed decision on selection and dosing of drugs in pediatrics. The ontogeny of drug-metabolizing enzymes (DMEs), transporters, and target proteins is the most crucial factor in pediatric pharmacogenomics. Based on in vitro and in vivo studies on the ontogeny of DMEs, various pharmacogenomic tests in pediatrics were evaluated concerning the pharmacokinetics of drugs utilized in pediatric pharmacotherapy. Needing to obtain clinically relevant advantages of incorporating pharmacogenomics in pediatric drug therapy, clinicians must be informed on pharmacogenomic terms by appropriate educational programs. Furthermore, a comprehensive database that can bank all pediatric pharmacogenomic information that can seamlessly collaborate with other international databases must be established.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abaji R, Krajinovic M (2016) Current perspective on pediatric pharmacogenomics. Expert Opin Drug Metab Toxicol 12:363–365

    Article  Google Scholar 

  • Agunod M, Yamaguchi N, Lopez R et al (1969) Correlative study of hydrochloric acid, pepsin, and intrinsic factor secretion in newborns and infants. Am J Dig Dis 14:400–414

    Article  CAS  Google Scholar 

  • Anderson BJ, van Lingen RA, Hansen TG et al (2002) Acetaminophen developmental pharmacokinetics in premature neonates and infants: a pooled population analysis. Anesthesiology 96:1336–1345

    Article  CAS  Google Scholar 

  • Anderson GD, Lynn AM (2009) Optimizing pediatric dosing: a developmental pharmacologic approach. Pharmacotherapy 29:680–690

    Article  CAS  Google Scholar 

  • Berman W Jr, Whitman V, Marks KH, Friedman Z, Maisels MJ, Musselman J (1978) Inadvertent overadministration of digoxin to low-birth-weight infants. J Pediatr 92(6):1024–1025

    Article  Google Scholar 

  • Birdwell KA, Decker B, Barbarino JM et al (2015) Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin Pharmacol Ther 98:19–24

    Article  CAS  Google Scholar 

  • Biss TT, Avery PJ, Brandao LR et al (2012) VKORC1 and CYP2C9 genotype and patient characteristics explain a large proportion of the variability in warfarin dose requirement among children. Blood 119:868–873

    Article  CAS  Google Scholar 

  • Blumer JL (1999) Off-label uses of drugs in children. Pediatrics 104:598–602

    CAS  PubMed  Google Scholar 

  • Brown AL, Lupo PJ, Okcu MF et al (2015) SOD2 genetic variant associated with treatment-related ototoxicity in cisplatin-treated pediatric medulloblastoma. Cancer Med 4:1679–1686

    Article  CAS  Google Scholar 

  • Brown RD, Campoli-Richards DM (1989) Antimicrobial therapy in neonates, infants and children. Clin Pharmacokinet 17:105–115

    Article  Google Scholar 

  • Bruggemann RJ, Alffenaar JW, Blijlevens NM et al (2009) Clinical relevance of the pharmacokinetic interactions of azole antifungal drugs with other coadministered agents. Clin Infect Dis 48:1441–1458

    Article  Google Scholar 

  • Center for Drug Evaluation and Research (CDER), Food and Drug Administration (1994) Guidance for industry: the content and format for pediatric use supplements

    Google Scholar 

  • Constance JE, Campbell SC, Somani AA et al (2017) Pharmacokinetics, pharmacodynamics and pharmacogenetics associated with nonsteroidal anti-inflammatory drugs and opioids in pediatric cancer patients. Expert Opin Drug Metab Toxicol 13:715–724

    Article  CAS  Google Scholar 

  • Crews KR, Gaedigk A, Dunnenberger HM et al (2014) Clinical Pharmacogenetics Implementation Consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther 95:376–382

    Article  CAS  Google Scholar 

  • Crom WR (1994) Pharmacokinetics in the child. Environ Health Perspect 102:111–117

    Article  Google Scholar 

  • Cuzzolin L, Atzei A, Fanos V (2006) Off-label and unlicensed prescribing for newborns and children in different settings: a review of the literature and a consideration about drug safety. Expert Opin Drug Saf 5:703–718

    Article  Google Scholar 

  • Debotton N, Dahan A (2014) A mechanistic approach to understanding oral drug absorption in pediatrics: an overview of fundamentals. Drug Discov Today 19:1322–1336

    Article  CAS  Google Scholar 

  • Drew L (2016) Pharmacogenetics: the right drug for you. Nature 537(7619):S60–S62. https://doi.org/10.1038/537S60a

    Article  CAS  PubMed  Google Scholar 

  • de Wildt SN, Kearns GL, Leeder JS et al (1999) Glucuronidation in humans. Pharmacogenetic and developmental aspects. Clin Pharmacokinet 36:439–452

    Article  Google Scholar 

  • Elens L, Capron A, van Schaik RH et al (2013) Impact of CYP3A4*22 allele on tacrolimus pharmacokinetics in early period after renal transplantation: toward updated genotype-based dosage guidelines. Ther Drug Monit 35:608–616

    CAS  PubMed  Google Scholar 

  • Engels MJ, Ciarkowski SL, Rood J et al (2016) Standardization of compounded oral liquids for pediatric patients in Michigan. Am J Health Syst Pharm 73:981–990

    Article  CAS  Google Scholar 

  • Evans WE, Relling MV, Petros WP et al (1989) Dextromethorphan and caffeine as probes for simultaneous determination of debrisoquin-oxidation and N-acetylation phenotypes in children. Clin Pharmacol Ther 45:568–573

    Article  CAS  Google Scholar 

  • Food and Drug Administration (2018) Table of pharmacogenomic biomarkers in drug labeling (2018). https://www.fda.gov/Drugs/ScienceResearch/ucm572698.htm

  • Frattarelli DA, Galinkin JL, Green TP et al (2014) Off-label use of drugs in children. Pediatrics 133:563–567

    Article  Google Scholar 

  • Fukudo M, Yano I, Masuda S et al (2006) Population pharmacokinetic and pharmacogenomic analysis of tacrolimus in pediatric living-donor liver transplant recipients. Clin Pharmacol Ther 80:331–345

    Article  CAS  Google Scholar 

  • Food and Drug Administration Modernization Act of 1997. (1997). https://www.govtrack.us/congress/bills/105/s830/text. Accessed 1 May 2018

  • Ganiere-Monteil C, Medard Y, Lejus C et al (2004) Phenotype and genotype for thiopurine methyltransferase activity in the French Caucasian population: impact of age. Eur J Clin Pharmacol 60:89–96

    Article  CAS  Google Scholar 

  • Giubergia V, Gravina L, Castanos C et al (2013) Influence of beta(2)-adrenergic receptor polymorphisms on asthma exacerbation in children with severe asthma regularly receiving salmeterol. Ann Allergy Asthma Immunol 110:156–160

    Article  CAS  Google Scholar 

  • Gershanik J, Boecler B, Ensley H et al (1982) The gasping syndrome and benzyl alcohol poisoning. New Engl J Med 307:1384–1388

    Article  CAS  Google Scholar 

  • Gore R, Chugh PK, Tripathi CD et al (2017) Pediatric off-label and unlicensed drug use and its implications. Curr Clin Pharmacol 12:18–25

    Article  Google Scholar 

  • Harries JT, Fraser AJ (1968) The acidity of the gastric contents of premature babies during the first fourteen days of life. Biol Neonat Neo-natal Stud 12(3):186–193

    Article  CAS  Google Scholar 

  • Hume R, Burchell A, Allan BB et al (1996) The ontogeny of key endoplasmic reticulum proteins in human embryonic and fetal red blood cells. Blood 87:762–770

    CAS  PubMed  Google Scholar 

  • Hume R, Coughtrie MW, Burchell B (1995) Differential localisation of UDP-glucuronosyltransferase in kidney during human embryonic and fetal development. Arch Toxicol 69:242–247

    Article  CAS  Google Scholar 

  • Johnson TN, Thomson M (2008) Intestinal metabolism and transport of drugs in children: the effects of age and disease. J Pediatr Gastroenterol Nutr 47:3–10

    Article  CAS  Google Scholar 

  • Kadam RS, Van Den Anker JN (2016) Pediatric clinical pharmacology of voriconazole: role of pharmacokinetic/pharmacodynamic modeling in pharmacotherapy. Clin Pharmacokinet 55:1031–1043

    Article  CAS  Google Scholar 

  • Kalra A, Goindi S (2014) Issues impacting therapeutic outcomes in pediatric patients: an overview. Curr Pediatr Rev 10:184–193

    PubMed  Google Scholar 

  • Kato Y, Ichida F, Saito K et al (2011) Effect of the VKORC1 genotype on warfarin dose requirements in Japanese pediatric patients. Drug Metab Pharmacokinet 26:295–299

    Article  CAS  Google Scholar 

  • Kearin M, Kelly JG, O’Malley K (1980) Digoxin “receptors” in neonates: an explanation of less sensitivity to digoxin than in adults. Clin Pharmacol Ther 28(3):346–349

    Article  CAS  Google Scholar 

  • Kearns GL, Abdel-Rahman SM, Alander SW et al (2003) Developmental pharmacology--drug disposition, action, and therapy in infants and children. N Engl J Med 349:1157–1167

    Article  CAS  Google Scholar 

  • Kearns GL (2015) Selecting the proper pediatric dose: it is more than size that matters. Clin Pharmacol Ther 98(3):238–240. https://doi.org/10.1002/cpt.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchheiner J, Stormer E, Meisel C et al (2003) Influence of CYP2C9 genetic polymorphisms on pharmacokinetics of celecoxib and its metabolites. Pharmacogenetics 13:473–480

    Article  CAS  Google Scholar 

  • Kirschner BS (1998) Safety of azathioprine and 6-mercaptopurine in pediatric patients with inflammatory bowel disease. Gastroenterology 115:813–821

    Article  CAS  Google Scholar 

  • Korbel L, George M, Kitzmiller J (2014) Clinically relevant pharmacogenomic testing in pediatric practice. Clin Pediatr (Phila) 53:831–838

    Article  Google Scholar 

  • Lam MS (2011) Extemporaneous compounding of oral liquid dosage formulations and alternative drug delivery methods for anticancer drugs. Pharmacotherapy 31(2):164–192. https://doi.org/10.1592/phco.31.2.164

    Article  CAS  PubMed  Google Scholar 

  • Lavertu A, McInnes G, Daneshjou R et al (2018) Pharmacogenomics and big genomic data: from lab to clinic and back again. Hum Mol Genet 27:R72–R78

    Article  Google Scholar 

  • Lanvers-Kaminsky C, Sprowl JA, Malath I et al (2015) Human OCT2 variant c.808G>T confers protection effect against cisplatin-induced ototoxicity. Pharmacogenomics 16:323–332

    Article  CAS  Google Scholar 

  • Leeder JS, Kearns GL (1997) Pharmacogenetics in pediatrics. Implications for practice. Pediatr Clin North Am 44:55–77

    Article  CAS  Google Scholar 

  • Lennard L, Lilleyman JS, Van Loon J et al (1990) Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet 336:225–229

    Article  CAS  Google Scholar 

  • Lennard L, Van Loon JA, Lilleyman JS et al (1987) Thiopurine pharmacogenetics in leukemia: correlation of erythrocyte thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations. Clin Pharmacol Ther 41:18–25

    Article  CAS  Google Scholar 

  • Lipworth BJ, Basu K, Donald HP et al (2013) Tailored second-line therapy in asthmatic children with the Arg(16) genotype. Clin Sci (Lond) 124:521–528. https://doi.org/10.1042/CS20120528

    Article  CAS  Google Scholar 

  • Liu SG, Gao C, Zhang RD, Zhao XX et al (2017) Polymorphisms in methotrexate transporters and their relationship to plasma methotrexate levels, toxicity of high-dose methotrexate, and outcome of pediatric acute lymphoblastic leukemia. Oncotarget 8:37761–37772

    PubMed  PubMed Central  Google Scholar 

  • Maitland-van der Zee AH, Raaijmakers JA (2012) Variation at GLCCI1 and FCER2: one step closer to personalized asthma treatment. Pharmacogenomics 13:243–245

    Article  CAS  Google Scholar 

  • McLeod HL, Krynetski EY, Wilimas JA et al (1995) Higher activity of polymorphic thiopurine S-methyltransferase in erythrocytes from neonates compared to adults. Pharmacogenetics 5:281–286

    Article  CAS  Google Scholar 

  • Mlakar V, Huezo-Diaz Curtis P, Satyanarayana Uppugunduri CR, Krajinovic M, Ansari M (2016) Pharmacogenomics in pediatric oncology: review of gene-drug associations for clinical use. Int J Mol Sci 17(9). https://doi.org/10.3390/ijms17091502

  • Moreau C, Bajolle F, Siguret V et al (2012) Vitamin K antagonists in children with heart disease: height and VKORC1 genotype are the main determinants of the warfarin dose requirement. Blood 119:861–867

    Article  CAS  Google Scholar 

  • Moriyama T, Nishii R, Lin TN et al (2017a) The effects of inherited NUDT15 polymorphisms on thiopurine active metabolites in Japanese children with acute lymphoblastic leukemia. Pharmacogenet Genomics 27:236–239

    Article  CAS  Google Scholar 

  • Moriyama T, Yang YL, Nishii R et al (2017b) Novel variants in NUDT15 and thiopurine intolerance in children with acute lymphoblastic leukemia from diverse ancestry. Blood 130:1209–1212

    Article  CAS  Google Scholar 

  • Mukattash TL, Nuseir KQ, Jarab AS et al (2014) Sources of information used when prescribing for children, a survey of hospital based pediatricians. Curr Clin Pharmacol 9:395–398

    Article  Google Scholar 

  • Murto K, Lamontagne C, McFaul C et al (2015) Celecoxib pharmacogenetics and pediatric adenotonsillectomy: a double-blinded randomized controlled study. Can J Anaesth 62:785–797

    Article  Google Scholar 

  • Neville KA, Becker ML, Goldman JL et al (2011) Developmental pharmacogenomics. Paediatr Anaesth 21:255–265

    Article  Google Scholar 

  • Nowak-Gottl U, Dietrich K, Schaffranek D et al (2010) In pediatric patients, age has more impact on dosing of vitamin K antagonists than VKORC1 or CYP2C9 genotypes. Blood 116:6101–6105

    Article  Google Scholar 

  • Palmaro A, Bissuel R, Renaud N et al (2015) Off-label prescribing in pediatric outpatients. Pediatrics 135:49–58

    Article  Google Scholar 

  • Palmer CN, Lipworth BJ, Lee S et al (2006) Arginine-16 beta2 adrenoceptor genotype predisposes to exacerbations in young asthmatics taking regular salmeterol. Thorax 61:940–944

    Article  CAS  Google Scholar 

  • PharmGKB (2018) PharmGKB FAQs. https://www.pharmgkb.org/page/faqs#what-is-the-difference-between-pharmacogenetics-and-pharmacogenomics. Accessed 18 Apr 2018

  • Preventing errors relating to commonly used anticoagulants (2008). Sentinel Event Alert (41):1–4

    Google Scholar 

  • Pussegoda K, Ross CJ, Visscher H, CPNDS Consortium et al (2013) Replication of TPMT and ABCC3 genetic variants highly associated with cisplatin-induced hearing loss in children. Clin Pharmacol Ther 94:243–251

    Article  CAS  Google Scholar 

  • Quiñones L, Roco A, Cayun JP et al (2017) Clinical applications of pharmacogenomics. Rev Med Chil 145:483–500

    Article  Google Scholar 

  • Ramos-Martin V, O’Connor O, Hope W (2015) Clinical pharmacology of antifungal agents in pediatrics: children are not small adults. Curr Opin Pharmacol 24:128–134

    Article  CAS  Google Scholar 

  • Relling MV, Gardner EE, Sandborn WJ et al (2011) Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin Pharmacol Ther 89:387–391

    Article  CAS  Google Scholar 

  • Roberts JK, Stockmann C, Constance JE et al (2014) Pharmacokinetics and pharmacodynamics of antibacterials, antifungals, and antivirals used most frequently in neonates and infants. Clin Pharmacokinet 53:581–610

    Article  CAS  Google Scholar 

  • Rood JM, Engels MJ, Ciarkowski SL et al (2014) Variability in compounding of oral liquids for pediatric patients: a patient safety concern. J Am Pharm Assoc: JAPhA 54:383–389

    Article  Google Scholar 

  • Ross CJ, Katzov-Eckert H, Dube MP, CPNDS Consortium et al (2009) Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat Genet 41:1345–1349

    Article  CAS  Google Scholar 

  • Sachs AN, Avant D, Lee CS et al (2012) Pediatric information in drug product labeling. Jama 307:1914–1915

    Article  CAS  Google Scholar 

  • Schmiegelow K, Nielsen SN, Frandsen TL et al (2014) Mercaptopurine/methotrexate maintenance therapy of childhood acute lymphoblastic leukemia: clinical facts and fiction. J Pediatr Hematol Oncol 36:503–517

    Article  CAS  Google Scholar 

  • Sharma S, Ellis EC, Gramignoli R et al (2013) Hepatobiliary disposition of 17-OHPC and taurocholate in fetal human hepatocytes: a comparison with adult human hepatocytes. Drug Metab Dispos 41:296–304

    Article  CAS  Google Scholar 

  • Shaw K, Amstutz U, Hildebrand C et al (2014) VKORC1 and CYP2C9 genotypes are predictors of warfarin-related outcomes in children. Pediatr Blood Cancer 61:1055–1062

    Article  CAS  Google Scholar 

  • Stevens JC, Marsh SA, Zaya MJ et al (2008) Developmental changes in human liver CYP2D6 expression. Drug Metab Dispos 36:1587–1593

    Article  CAS  Google Scholar 

  • Stockmann C, Fassl B, Gaedigk R et al (2013) Fluticasone propionate pharmacogenetics: CYP3A4*22 polymorphism and pediatric asthma control. J Pediatr 162:1222–1227, 1227 e1221–1222

    Article  CAS  Google Scholar 

  • Stockmann C, Reilly CA, Fassl B et al (2015) Effect of CYP3A5*3 on asthma control among children treated with inhaled beclomethasone. J Allergy Clin Immunol 136:505–507

    Article  CAS  Google Scholar 

  • Table of Pharmacogenomic Biomarkers in Drug Labeling (2018) Center for Drug Evaluation and Research https://www.fda.gov/Drugs/ScienceResearch/ucm572698.htm

  • Teusink A, Vinks A, Zhang K et al (2016) Genotype-directed dosing leads to optimized voriconazole levels in pediatric patients receiving hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 22:482–486

    Article  CAS  Google Scholar 

  • Turner S, Francis B, Vijverberg S et al (2016) Pharmacogenomics in childhood asthma C childhood asthma exacerbations and the Arg16 beta2-receptor polymorphism: a meta-analysis stratified by treatment. J Allergy Clin Immunol 138:107–113

    Article  CAS  Google Scholar 

  • Vear SI, Ayers GD, Van Driest SL et al (2014) The impact of age and CYP2C9 and VKORC1 variants on stable warfarin dose in the paediatric population. Br J Haematol 165:832–835

    Article  CAS  Google Scholar 

  • Walsh TJ, Karlsson MO, Driscoll T et al (2004) Pharmacokinetics and safety of intravenous voriconazole in children after single- or multiple-dose administration. Antimicrob Agents Chemother 48:2166–2172

    Article  CAS  Google Scholar 

  • Wright FA, Bebawy M, O’Brien TA (2015) An analysis of the therapeutic benefits of genotyping in pediatric hematopoietic stem cell transplantation. Future Oncol 11:833–851

    Article  CAS  Google Scholar 

  • Wehry AM, Ramsey L, Dulemba SE et al (2018) Pharmacogenomic testing in child and adolescent psychiatry: an evidence-based review. Curr Probl Pediatr Adolesc Health Care 48:40–49

    Article  Google Scholar 

  • Xie HG (2010) Personalized immunosuppressive therapy in pediatric heart transplantation: Progress, pitfalls and promises. Pharmacol Ther 126:146–158

    Article  CAS  Google Scholar 

  • Xu H, Robinson GW, Huang J et al (2015) Common variants in ACYP2 influence susceptibility to cisplatin-induced hearing loss. Nat Genet 47:263–266

    Article  CAS  Google Scholar 

  • Zhao W, Elie V, Roussey G et al (2009) Population pharmacokinetics and pharmacogenetics of tacrolimus in de novo pediatric kidney transplant recipients. Clin Pharmacol Ther 86:609–618

    Article  CAS  Google Scholar 

  • Zhao W, Fakhoury M, Baudouin V et al (2013) Population pharmacokinetics and pharmacogenetics of once daily prolonged-release formulation of tacrolimus in pediatric and adolescent kidney transplant recipients. Eur J Clin Pharmacol 69:189–195

    Article  CAS  Google Scholar 

  • Zuurhout MJ, Vijverberg SJ, Raaijmakers JA et al (2013) Arg16 ADRB2 genotype increases the risk of asthma exacerbation in children with a reported use of long-acting beta2-agonists: results of the PACMAN cohort. Pharmacogenomics 14:1965–1971

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine M. Sherwin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yellepeddi, V.K., Roberts, J.K., Escobar, L., Sayre, C., Sherwin, C.M. (2018). The Relationship Between Pharmacogenomics and Pharmacokinetics and Its Impact on Drug Choice and Dosing Regimens in Pediatrics. In: Talevi, A., Quiroga, P. (eds) ADME Processes in Pharmaceutical Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-99593-9_9

Download citation

Publish with us

Policies and ethics