Skip to main content

Strategies to Enhance Drought Tolerance in Peanut and Molecular Markers for Crop Improvement

  • Chapter
  • First Online:
Genomics Assisted Breeding of Crops for Abiotic Stress Tolerance, Vol. II

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 21))

Abstract

The production of peanut (Arachis hypogaea L.) in warm environments and on sandy soils makes the crop vulnerable to soil drying in nearly every cropping season. Several traits are being explored to overcome yield decreases resulting from the inevitable water deficits that develop in the soil. In this review, two traits: (1) an early limitation on transpiration rate (TR) as the soil dries, and (2) limitation on maximum TR (TRlim) under high vapor pressure deficit (VPD) in peanut will be discussed. Both of these traits result in water conservation by limiting plant transpiration rates and are potential reasons for genetic variation in Transpiration Efficiency (TE). The basis for transpiration response to soil water deficits and high VPD at the tissue and whole plant levels appears to be leaf and root hydraulic properties. A contributing factor in determining hydraulic limitations is water transport through membranes via aquaporins (AQP). Overall, both of the two traits result in phenotypes with an ability to conserve water especially under late-season drought events. While large genetic variability in these traits has been observed in peanut, breeding efforts are still required to exploit these promising traits in commercial cultivars. This review focuses on the traits in peanut that allow identification of tolerant genotypes with potential yield increase in water-limited environments. A recent progress in molecular marker technology has made it possible to measure polymorphism in peanut and to identify molecular markers or quantitative trait loci (QTL) linked to TE and its surrogate traits despite its low levels of molecular polymorphism and complex polyploid genome. We also reviewed some of these QTLs and their potential application for molecular breeding in peanut under water-limited environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bhatnagar-Mathur P, Devi MJ, Reddy SD et al (2007) Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26:2071–2082

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Devi MJ et al (2009) Genetic engineering of chickpea (Cicer arietinum L.) with the P5CSF129A gene for osmoregulation with implications on drought tolerance. Mol Breed 23(4):591–606

    Article  CAS  Google Scholar 

  • Bierhuizen JF, Slatyer RO (1965) Effect of atmospheric concentration of water vapor and CO2 in determining transpiration-photosynthesis relationships of cotton leaves. Agric Meteor 2:259–270

    Article  Google Scholar 

  • Branch WD, Kvien CK (1992) Peanut breeding for drought resistance. Peanut Sci 19(1):44–46

    Article  Google Scholar 

  • Clifford SC, Stronach IM, Black CR et al (2000) Effect of elevated CO2, drought and temperature on the water relations and gas exchange of groundnut (Arachis hypogaea) stands grown in controlled environment glasshouses. Physiol Plant 110:78–88

    Article  CAS  Google Scholar 

  • Cuc LM, Mace ES, Crouch JH et al (2008) Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea L.). BMC Plant Biol 8(1):1

    Article  CAS  Google Scholar 

  • Devi MJ, Sinclair TR (2011) Diversity in drought traits among commercial southeastern US peanut cultivars. Int J Agron. https://doi.org/10.1155/2011/754658

    Article  Google Scholar 

  • Devi MJ, Sinclair TR, Vadez V et al (2009) Peanut genotypic variation in transpiration efficiency and decreased transpiration during progressive soil drying. Field Crop Res 114(2):280–285

    Article  Google Scholar 

  • Devi MJ, Sinclair TR, Vadez V (2010) Genotypic variation in peanut for transpiration response to vapor pressure deficit. Crop Sci 50(1):191–196

    Article  Google Scholar 

  • Devi MJ, Sadok W, Sinclair TR (2012) Transpiration response of de-rooted peanut plants to aquaporin inhibitors. Environ Exp Bot 78:167–172

    Article  CAS  Google Scholar 

  • Devi MJ, Sinclair TR, Beebe SE et al (2013) Comparison of common bean (Phaseolus vulgaris L.) genotypes for nitrogen fixation tolerance to soil drying. Plant Soil 364(1–2):29–37

    Article  CAS  Google Scholar 

  • Devi MJ, Sinclair TR, Chen P et al (2014) Evaluation of elite southern maturity soybean breeding lines for drought-tolerant traits. Agron J 106(6):1947–1954

    Article  Google Scholar 

  • Devi MJ, Sinclair TR, Jain M et al (2016) Leaf aquaporin transcript abundance in peanut genotypes diverging in expression of the limited-transpiration trait when subjected to differing vapor pressure deficits and aquaporin inhibitors. Physiol Plant 156(4):387–396

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi SL, Gurtu S, Chandra S et al (2001) Assessment of genetic diversity among selected groundnut germplasm. I: RAPD analysis. Plant Breed 120(4):345–349

    Article  CAS  Google Scholar 

  • Ferguson ME, Burow MD, Schulze SR et al (2004) Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor Appl Genet 108(6):1064–1070

    Article  CAS  PubMed  Google Scholar 

  • Fletcher AL, Sinclair TR, Allen LH (2007) Transpiration responses to vapor pressure deficit in well-watered ‘slow-wilting’ and commercial soybean. Environ Exp Bot 61:145–151

    Article  CAS  Google Scholar 

  • Fonceka D, Tossim HA, Rivallan R et al (2012) Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biol 12(1):1

    Article  Google Scholar 

  • Gautami B, Pandey MK, Vadez V et al (2012) QTL analysis and consensus genetic map for drought tolerance traits based on three RIL populations of cultivated groundnut (Arachis hypogaea L.). Mol Breed 32:757–772

    Article  Google Scholar 

  • Gholipoor M, Prasad PVV, Mutava RN et al (2010) Genetic variability of transpiration response to vapor pressure deficit among sorghum genotypes. Field Crop Res 119:85–90

    Article  Google Scholar 

  • He G, Prakash CS (1997) Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica 97(2):143–149

    Article  CAS  Google Scholar 

  • He G, Meng R, Newman M, Gao G, Pittman R, Prakash CS (2003) Microsatellites as DNAmarkers in cultivated peanut (A. hypogaea L.). BMC Plant Biol 3:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinen RB, Ye Q, Chaumont F (2009) Role of aquaporins in leaf physiology. J Exp Bot 171 https://doi.org/10.1093/jxb/erp171

    Article  CAS  PubMed  Google Scholar 

  • Hopkins MS, Casa AM, Wang T et al (1999) Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci 39(4):1243–1247

    Article  CAS  Google Scholar 

  • Hyten DL, Song Q, Fickus EW et al (2010) High-throughput SNP discovery and assay development in common bean. BMC Genom 11(1):475

    Article  CAS  Google Scholar 

  • Kholova J, Hash CT, Kakkera A et al (2010) Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet Pennisetum glaucum (L.) R. Br. J Expert Bot 61:369–377

    Article  CAS  Google Scholar 

  • Kochert G, Stalker HT, Gimenes M et al (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 83:1282–1291

    Article  CAS  Google Scholar 

  • Kramer PJ (1980) Drought, stress, and the origin of adaptations. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley, New York, pp 7–20

    Google Scholar 

  • Krishnamurthy L, Vadez V, Devi MJ et al (2007) Variation in transpiration efficiency and its related traits in a groundnut (Arachis hypogaea L.) mapping population. Field Crop Res 103:189–197

    Article  Google Scholar 

  • Levin M, Lemcoff JH, Cohen S et al (2007) Low air humidity increases leaf-specific hydraulic conductance of Arabidopsis thaliana (L.) Heynh (Brassicaceae). J Exp Bot 58(13):3711–3718

    Article  CAS  PubMed  Google Scholar 

  • Moretzsohn MC, Leoi L, Proite K et al (2005) A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet 111(6):1060–1071

    Article  CAS  PubMed  Google Scholar 

  • Nardini A, Salleo S (2005) Water stress-induced modifications of leaf hydraulic architecture in sunflower: co-ordination with gas exchange. J Exp Bot 56(422):3093–3101

    Article  CAS  PubMed  Google Scholar 

  • Pandey MK, Gautami B, Jayakumar T et al (2012a) Highly informative genic and genomic SSR markers to facilitate molecular breeding in cultivated groundnut (Arachis hypogaea). Plant Breed 131(1):139–147

    Article  CAS  Google Scholar 

  • Pandey MK, Monyo E, Ozias-Akins P et al (2012b) Advances in Arachis genomics for peanut improvement. Biotechnol Adv 30:639–651

    Article  CAS  PubMed  Google Scholar 

  • Pandey MK, Guo B, Holbrook CC et al (2014a) Molecular markers, genetic maps and QTLs for molecular breeding in peanut. In: Mallikarjuna N, Varshney R (eds) Genetics, genomics and breeding of peanuts. CRC Press, USA, pp 61–113

    Google Scholar 

  • Pandey MK, Upadhyaya HD, Rathore A et al (2014b) Genome wide association studies for 50 agronomic traits in peanut using the ‘reference set’ comprising 300 genotypes from 48 countries of the semi-arid tropics of the world. PLoS ONE 20 9(8):e105228

    Article  CAS  Google Scholar 

  • Passioura JB (1977) Grain yield, harvest index, and water use of wheat. J Aus Inst Agri Sci 43:117–120

    Google Scholar 

  • Peng Z, Gallo M, Tillman BL et al (2016) Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut (Arachis hypogaea L.). Mol Genet Genomics 1–19

    Google Scholar 

  • Rao RCN, Wright GC (1994) Stability of the relationship between specific leaf area and carbon isotope discrimination across environments in peanut. Crop Sci 34:98–103

    Article  Google Scholar 

  • Rao RCN, Williams JH, Wadia KDR et al (1993) Crop growth, water use efficiency and carbon isotope discrimination in groundnut (Arachis hypogeae L.) genotypes under end of season drought conditions. Ann Appl Biol 122:357–367

    Article  Google Scholar 

  • Ratnakumar P, Vadez V, Nigam SN et al (2009) Assessment of transpiration efficiency in peanut (Arachis hypogaea L.) under drought using a lysimetric system. Plant Biol 11:124–130

    Article  CAS  PubMed  Google Scholar 

  • Ravi K, Vadez V, Isobe S et al (2011) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet 122(6):1119–1132

    Article  CAS  PubMed  Google Scholar 

  • Ray JD, Sinclair TR (1997) Stomatal conductance of maize hybrids in response to drying soil. Crop Sci 37:803–807

    Article  Google Scholar 

  • Ray JD, Sinclair TR (1998) The effect of pot size on growth and transpiration of maize and soybean during water deficit stress. J Expt Bot 49:1381–1386

    Article  CAS  Google Scholar 

  • Ray JD, Gesch RW, Sinclair TR et al (2002) The effect of vapor pressure deficit on maize transpiration response to a drying soil. Plant Soil 239:113–121

    Article  CAS  Google Scholar 

  • Ritchie JT (1981) Water dynamics in the soil-plant-atmosphere system. Plant Soil 55:81–96

    Article  Google Scholar 

  • Sadok W, Sinclair TR (2009) Genetic variability of transpiration response to vapor pressure deficit among soybean cultivars. Crop Sci 49(3):955–960

    Article  Google Scholar 

  • Sadok W, Sinclair TR (2010) Transpiration response of ‘slow-wilting’ and commercial soybean (Glycine max (L.) Merr.) genotypes to three aquaporin inhibitors. J Exp Bot 61(3):821–829

    Article  CAS  PubMed  Google Scholar 

  • Sadras VO, Milroy SP (1996) Soil-water thresholds for the responses of leaf expansion and gas exchange: a review. Field Crop Res 47:253–266

    Article  Google Scholar 

  • Seversike TM, Sermons SM, Sinclair TR et al (2013) Temperature interactions with transpiration response to vapor pressure deficit among cultivated and wild soybean genotypes. Physiol Plant 148(1):62–73

    Article  CAS  PubMed  Google Scholar 

  • Sharma KK, Lavanya M (2002) Recent developments in transgenics for abiotic stress in legumes of the semi-arid tropics. JIRCAS Work Rep 61–73

    Google Scholar 

  • Shatil-Cohen A, Attia Z, Moshelion M (2011) Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA? Plant J 67(1):72–80

    Article  CAS  PubMed  Google Scholar 

  • Shekoofa A, Devi JM, Sinclair TR et al (2013) Divergence in drought-resistance traits among parents of recombinant peanut inbred lines. Crop Sci 53(6):2569–2576

    Article  Google Scholar 

  • Shekoofa A, Rosas-Anderson P, Sinclair TR et al (2015) Measurement of limited-transpiration trait under high vapor pressure deficit for peanut in chambers and in field. Agron J 107(3):1019–1024

    Article  Google Scholar 

  • Sheshshayee MS, Bindumadhava AG, Shankar TG et al (2003) Breeding strategies to exploit water use efficiency for crop improvement. J Plant Biol 30:253–268

    Google Scholar 

  • Sheshshayee MS, Bindumadhava H, Rachaputi NR et al (2006) Leaf chlorophyll concentration relates to transpiration efficiency in peanut. Ann Appl Biol 148:7–15

    Article  CAS  Google Scholar 

  • Sinclair TR (2012) Is transpiration efficiency a viable plant trait in breeding for crop improvement? Funct Plant Biol 39:359–365

    Article  Google Scholar 

  • Sinclair TR, Ludlow MM (1986) Influence of soil water supply on the plant water balance of four tropical grain legumes. Aust J Plant Physiol 13:319–340

    Google Scholar 

  • Sinclair TR, Muchow RC (2001) System analysis of plant traits to increase grain yield on limited water supplies. Agron J 93(2):263–270

    Article  Google Scholar 

  • Sinclair TR, Tanner CB, Bennett JM (1984) Water-use efficiency in crop production. Bioscience 34:36–40

    Article  Google Scholar 

  • Sinclair TR, Hammer GL, van Oosterom EJ (2005) Potential yield and water-use efficiency benefits in sorghum from limited maximum transpiration rate. Funct Plant Biol 32:945–952

    Article  Google Scholar 

  • Sinclair TR, Zwieniecki MA, Holbrook NM (2008) Low leaf hydraulic conductance associated with drought tolerance in soybean. Physiol Plant 132:446–451

    Article  CAS  PubMed  Google Scholar 

  • Sinclair TR, Messina CD, Beatty A et al (2010) Assessment across the United States of the benefits of altered soybean drought traits. Agron J 102(2):475–482

    Article  Google Scholar 

  • Sinclair TR, Marrou H, Soltani A et al (2014) Soybean production potential in Africa. Glob Food Sec 3(1):31–40

    Article  Google Scholar 

  • Sinclair TR, Manandhar A, Belko N et al (2015) Variation among cowpea genotypes in sensitivity of transpiration rate and symbiotic nitrogen fixation to soil drying. Crop Sci 55(5):2270–2275

    Article  CAS  Google Scholar 

  • Stalker HT, Mozingo LG (2001) Molecular markers of Arachis and marker-assisted selection. Peanut Sci 28(2):117–123

    Article  CAS  Google Scholar 

  • Subramanian V, Gurtu S, Rao RN et al (2000) Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome 43(4):656–660

    Article  CAS  PubMed  Google Scholar 

  • Tanner CB, Sinclair TR (1983) Efficient water use in crop production: research or re-search? In: Taylor HM et al (eds) Limitations to efficient water use in crop production. ASA, CSSA and SSSA, Madison, pp 1–27

    Google Scholar 

  • Varshney RK, Bertioli DJ, Moretzsohn MC et al (2009) The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet 118:729–739

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Pandey MK, Janila P et al (2014) Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theor Appl Genet 127(8):1771–1781

    Article  PubMed  PubMed Central  Google Scholar 

  • Weisz R, Kaminski J, Smilowitz Z (1994) Water deficit effects on potato leaf growth and transpiration: utilizing fraction extractable soil water for comparison with other crops. Am Potato J 71:829–840

    Article  Google Scholar 

  • Wright GC, Hubick KT, Farquhar GD (1991) Physiological analysis of peanut cultivar response to timing and duration of drought stress. Aust J Agric Res 42:453–470

    Article  Google Scholar 

  • Wright GC, Rao RCN, Farquhar GD (1994) Water use efficiency and carbon isotope discrimination in peanut under water deficit conditions. Crop Sci 34:92–97

    Article  Google Scholar 

  • Wright GC, Nageswara Rao RC, Basu MS (1996) A physiological approach to the understanding of genotype by environment interactions—a case study on improvement of drought adaptation in peanut. In: Cooper M, Hammer GL (eds) Plant adaptation and crop improvement. CAB International, Wallingford, pp 365–381

    Google Scholar 

  • Zaman-Allah M, Jenkinson DM, Vadez V (2011) Chickpea genotypes contrasting for seed yield under terminal drought stress in the field differ for traits related to the control of water use. Func Plant Biol 38:270–281

    Article  Google Scholar 

  • Zhang X, Han S, Tang F et al (2013) Genetic analysis of yield in peanut (Arachis hypogaea L.) using mixed model of major gene plus polygene. Afr J Biotechnol 10(37):7126–7130

    Google Scholar 

  • Zhao Y, Prakash CS, He G (2012) Characterization and compilation of polymorphic simple sequence repeat (SSR) markers of peanut from public database. BMC Res Notes 5(1):362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Puppala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jyostna Devi, M., Sinclair, T.R., Vadez, V., Shekoofa, A., Puppala, N. (2019). Strategies to Enhance Drought Tolerance in Peanut and Molecular Markers for Crop Improvement. In: Rajpal, V., Sehgal, D., Kumar, A., Raina, S. (eds) Genomics Assisted Breeding of Crops for Abiotic Stress Tolerance, Vol. II. Sustainable Development and Biodiversity, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-99573-1_8

Download citation

Publish with us

Policies and ethics