Molecular Responses to Cold Stress in Temperate Fruit Crops with Focus on Rosaceae Family

  • Arghavan AlisoltaniEmail author
  • Marziyeh Karimi
  • Rudabeh Ravash
  • Hossein Fallahi
  • Behrouz ShiranEmail author
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 21)


Cold stress is considered as one of the main limiting environmental factors causing a significant loss in the production of fruit crops. Although many fruit crops require chilling during winter to develop fruiting buds, late winter, and early spring frost can severely damage buds, flowers, and fruits and can lead to the reduction of productivity. Among different plant families, the Rosaceae family contains several economically pivotal fruit-producing crops, such as Fragaria (strawberries), Malus (apple), Rubus (blueberries) and Prunus (stone fruits), which suffer from cold injuries during the blooming period. This chapter provides a general overview of the role of various molecular components involved in sensing and signal transduction processes as well as the regulation of gene expression in response to cold stress in fruit crops. Besides, the impact of next-generation sequencing approaches is highlighted in the molecular studies of the Rosaceae family. Also, we have addressed the existing gaps to help researchers identify areas that need more attention.


Cold stress Fruit crops Gene expression NGS Rosaceae Signal transduction 



We would like to highlight our gratitude to Ms. Parisa Shiran for her invaluable comments and corrections.


  1. Alexiou P, Vergoulis T, Gleditzsch M, Prekas G et al (2009) miRGen 2.0: a database of microRNA genomic information and regulation. Nucleic Acids Res 38(Database issue):D137–D141PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alisoltani A, Shiran B, Fallahi H, Ebrahimie E (2015) Gene regulatory network in almond (Prunus dulcis Mill.) in response to frost stress. Tree Genet Genomes 11:1–15CrossRefGoogle Scholar
  3. Alisoltani A, Ebrahimi S, Azarian S, Hematyar M et al (2016) Parallel consideration of SSRs and differentially expressed genes under abiotic stress for targeted development of functional markers in almond and related Prunus species. Sci Hortic 198:462–472CrossRefGoogle Scholar
  4. Alkio M, Jonas U, Declercq M, Van Nocker S, Knoche M (2014) Transcriptional dynamics of the developing sweet cherry (Prunus avium L.) fruit: sequencing, annotation and expression profiling of exocarp-associated genes. Hortic Res 1:11Google Scholar
  5. Allen DJ, Ratner K, Giller YE, Gussakovsky EE, Shahak Y, Ort DR (2000) An overnight chill induces a delayed inhibition of photosynthesis at midday in mango (Mangifera indica L.). J Exp Bot 51:1893–1902. Scholar
  6. Artlip TS, Wisniewski ME, Bassett CL, Norelli JL (2013) CBF gene expression in peach leaf and bark tissues is gated by a circadian clock. Tree Physiol 33:866–877PubMedCrossRefPubMedCentralGoogle Scholar
  7. Artlip TS, Wisniewski ME, Norelli JL (2014) Field evaluation of apple overexpressing a peach CBF gene confirms its effect on cold hardiness, dormancy, and growth. Environ Exp Bot 106:79–86CrossRefGoogle Scholar
  8. Baniulis D, Stepulaitiene I, Lukoseviciute V, Blazyte A, Stanys V, Rugienius R, Sasnauskas A (2012) Accumulation of dehydrin-like proteins in pear (Pyrus communis L.) microshoots during cold acclimation. Žemdirbystė (Agriculture) 99:293–298Google Scholar
  9. Barakat A, Sriram A, Park J, Zhebentyayeva T, Main D, Abbott A (2012) Genome wide identification of chilling responsive microRNAs in Prunus persica. BMC Genom 13:481CrossRefGoogle Scholar
  10. Barros PM, Gonçalves N, Saibo NJ, Oliveira MM (2012) Functional characterization of two almond C-repeat-binding factors involved in cold response. Tree Physiol 32(9):1113–1128PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bayat H, Noghondar MA, Neamati H, Nezami A (2013) Exogenous application of ascorbic acid alleviates chilling injury in apricot (Prunus armeniaca L. cv. Shahroudi) flowers. J Stress Physiol Biochem 9:199–206Google Scholar
  12. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The resource: targets and expression. Nucleic Acids Res 36:D149–D153PubMedCrossRefPubMedCentralGoogle Scholar
  13. Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu J-K (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cao S, Yang Z, Cai Y, Zheng Y (2011) Fatty acid composition and antioxidant system in relation to susceptibility of loquat fruit to chilling injury. Food Chem 127:1777–1783CrossRefGoogle Scholar
  15. Cao X, Wu Z, Jiang F, Zhou R, Yang Z (2014) Identification of chilling stress-responsive tomato microRNAs and their target genes by high-throughput sequencing and degradome analysis. BMC Genom 15:1Google Scholar
  16. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655PubMedPubMedCentralCrossRefGoogle Scholar
  17. Catala R, Ouyang J, Abreu IA, Hu Y, Seo H, Zhang X, Chua N-H (2007) The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell 19:2952–2966PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen L, Zhang Y, Ren Y, Xu J, Zhang Z, Wang Y (2012) Genome-wide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing. Biochem Biophys Res Commun 417:892–896PubMedCrossRefPubMedCentralGoogle Scholar
  19. Chen Y, Mao Y, Liu H, Yu F, Li S, Yin T (2014) Transcriptome analysis of differentially expressed genes relevant to variegation in peach flowers. PloS ONE 9:e90842PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chengguo D, Xianli L, Dongsheng G, Huanfang L, Meng L (2004) Studies on regulations of endogenous ABA and GA~ 3 in sweet cherry flower buds on dormancy. Acta Hort Sinica 31:149–154Google Scholar
  21. Chinnusamy V, Ohta M, Kanrar S, Lee B-H, Hong X, Agarwal M, Zhu J-K (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chinnusamy V, Zhu J, Zhu J-K (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chinnusamy V, Zhu J-K, Sunkar R (2010) Gene regulation during cold stress acclimation in plants. Methods Mol Biol 639:39–55PubMedPubMedCentralCrossRefGoogle Scholar
  24. Crisosto C, Mitchell F, Ju Z (1999) Susceptibility to chilling injury of peach, nectarine, and plum cultivars grown in California. Hort Sci 34(6):1116–1118Google Scholar
  25. Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124PubMedCrossRefPubMedCentralGoogle Scholar
  26. Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dai J, Wang H, Ge Q (2013) The decreasing spring frost risks during the flowering period for woody plants in temperate area of eastern China over past 50 years. J Geogr Sci 23:641–652CrossRefGoogle Scholar
  28. Destefano-Beltrán L, Knauber D, Huckle L, Suttle J (2006) Chemically forced dormancy termination mimics natural dormancy progression in potato tuber meristems by reducing ABA content and modifying expression of genes involved in regulating ABA synthesis and metabolism. J Exp Bot 57:2879–2886PubMedCrossRefPubMedCentralGoogle Scholar
  29. Dhanapal AP, Crisosto CH (2013) Association genetics of chilling injury susceptibility in peach (Prunus persica (L.) Batsch) across multiple years. 3 Biotech 3:481–490PubMedPubMedCentralCrossRefGoogle Scholar
  30. Die JV, Rowland LJ (2013) Advent of genomics in blueberry. Mol Breed 32:493–504CrossRefGoogle Scholar
  31. Ding C-K, Wang CY, Gross KC, Smith DL (2001) Reduction of chilling injury and transcript accumulation of heat shock proteins in tomato fruit by methyl jasmonate and methyl salicylate. Plant Sci 161:1153–1159CrossRefGoogle Scholar
  32. Ding C-K, Wang C, Gross KC, Smith DL (2002) Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta 214:895–901PubMedCrossRefPubMedCentralGoogle Scholar
  33. Ding Z, Tian S, Meng X, Xu Y (2009) Hydrogen peroxide is correlated with browning in peach fruit stored at low temperature. Front Chem Eng China 3:363–374CrossRefGoogle Scholar
  34. Dong C-H, Agarwal M, Zhang Y, Xie Q, Zhu J-K (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA 103:8281–8286PubMedCrossRefPubMedCentralGoogle Scholar
  35. Du D, Zhang Q, Cheng T, Pan H, Yang W, Sun L (2013) Genome-wide identification and analysis of late embryogenesis abundant (LEA) genes in Prunus mume. Mol Biol Rep 40:1937–1946PubMedCrossRefPubMedCentralGoogle Scholar
  36. Eldem V, Akçay UÇ, Ozhuner E, Bakır Y, Uranbey S, Unver T (2012) Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing. PLoS ONE 7:e50298PubMedPubMedCentralCrossRefGoogle Scholar
  37. Ensminger I, Busch F, Huner N (2006) Photostasis and cold acclimation: sensing low temperature through photosynthesis. Physiol Plant 126:28–44CrossRefGoogle Scholar
  38. Fang X, Zhao Y, Ma Q, Huang Y et al (2013) Identification and comparative analysis of cadmium tolerance-associated miRNAs and their targets in two soybean genotypes. PLoS ONE 8:e81471PubMedPubMedCentralCrossRefGoogle Scholar
  39. Feng X-M, Zhao Q, Zhao L-L, Qiao Y et al (2012) The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple. BMC Plant Biol 12:22PubMedPubMedCentralCrossRefGoogle Scholar
  40. Folta KM, Gardiner SE (eds) (2009) Genetics and genomics of Rosaceae. Springer, New YorkGoogle Scholar
  41. Friedländer MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26:407–415PubMedCrossRefPubMedCentralGoogle Scholar
  42. Furuya T, Matsuoka D, Nanmori T (2013) Phosphorylation of Arabidopsis thaliana MEKK1 via Ca2+ signaling as a part of the cold stress response. J Plant Res 126:833–840PubMedCrossRefPubMedCentralGoogle Scholar
  43. Gao Z, Shi T, Luo X, Zhang Z, Zhuang W, Wang L (2012) High-throughput sequencing of small RNAs and analysis of differentially expressed microRNAs associated with pistil development in Japanese apricot. BMC Genom 13:1CrossRefGoogle Scholar
  44. Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442PubMedCrossRefPubMedCentralGoogle Scholar
  45. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158PubMedCrossRefPubMedCentralGoogle Scholar
  46. Guerra D, Crosatti C, Khoshro HH, Mastrangelo AM, Mica E, Mazzucotelli E (2015) Post-transcriptional and post-translational regulations of drought and heat response in plants: a spider’s web of mechanisms. Front Plant Sci 6Google Scholar
  47. Gülen H, Çetinkaya C, Kadıoğlu M, Kesici M, Cansev A, Eriş A (2008) Peroxidase activity and lipid peroxidation in strawberry (Fragaria X ananassa) plants under low temperature. J Biol Environ Sci 2Google Scholar
  48. Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatshefte für Chemie/Chemical Monthly 125:167–188CrossRefGoogle Scholar
  50. Hsu S-D, Chu C-H, Tsou A-P, Chen S-J et al (2008) miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes. Nucleic Acids Res 36:D165–D169PubMedCrossRefPubMedCentralGoogle Scholar
  51. Huang X, Li K, Jin C, Zhang S (2015) ICE1 of Pyrus ussuriensis functions in cold tolerance by enhancing PuDREBa transcriptional levels through interacting with PuHHP1. Sci Rep 5Google Scholar
  52. Iezzoni A, Hancock J, Owens C (2002) Enhancement of freezing tolerance of strawberry by heterologous expression of CBF1. In: XXVI International Horticultural Congress: Berry Crop Breeding, Production and Utilization for a New Century. 626:93–100Google Scholar
  53. Ismail M, Grierson W (1977) Seasonal susceptibility of grapefruit to chilling injury as modified by certain growth regulators. Hort Sci 12(2):18–120Google Scholar
  54. Janská A, Maršík P, Zelenková S, Ovesna J (2010) Cold stress and acclimation–what is important for metabolic adjustment? Plant Biol 12:395–405PubMedCrossRefPubMedCentralGoogle Scholar
  55. Jiang H, Wong WH (2008) SeqMap: mapping massive amount of oligonucleotides to the genome. Bioinformatics 24:2395–2396PubMedPubMedCentralCrossRefGoogle Scholar
  56. Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H (1996) Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA 93:11274–11279PubMedCrossRefPubMedCentralGoogle Scholar
  57. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kaja E, Szcześniak MW, Jensen PJ, Axtell MJ, McNellis T, Makałowska I (2015) Identification of apple miRNAs and their potential role in fire blight resistance. Tree Genet Genomes 11:1–11CrossRefGoogle Scholar
  59. Karimi S, Yadollahi A, Arzani K (2013) Responses of almond genotypes to osmotic stress induced in vitro. J Nuts 4:1–7Google Scholar
  60. Karimi M, Ghazanfari F, Fadaei A, Ahmadi L, Shiran B, Rabei M, Fallahi H (2016) The small-RNA profiles of almond (Prunus dulcis Mill.) reproductive tissues in response to cold stress. PloS ONE 11(6):e0156519PubMedPubMedCentralCrossRefGoogle Scholar
  61. Katiyar A, Smita S, Muthusamy SK, Chinnusamy V, Pandey DM, Bansal KC (2015) Identification of novel drought-responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench by high-throughput sequencing analysis. Front Plant Sci 6:506.
  62. Ke X, Yin Z, Song N, Dai Q et al (2014) Transcriptome profiling to identify genes involved in pathogenicity of Valsa mali on apple tree. Fungal Genet Biol 68:31–38PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kim S-K, Nam J-W, Rhee J-K, Lee W-J, Zhang B-T (2006) miTarget: microRNA target gene prediction using a support vector machine. BMC Bioinf 7:411CrossRefGoogle Scholar
  64. Kitashiba H, Ishizaka T, Isuzugawa K, Nishimura K, Suzuki T (2004) Expression of a sweet cherry DREB1/CBF ortholog in Arabidopsis confers salt and freezing tolerance. J Plant Physiol 161:1171–1176PubMedCrossRefPubMedCentralGoogle Scholar
  65. Kramer GF, Wang CY (1989) Correlation of reduced chilling injury with increased spermine and spermidine levels in zucchini squash. Physiol Plant 76:479–484CrossRefGoogle Scholar
  66. Ku Y-S, Wong JW-H, Mui Z, Liu X, Hui JH-L, Chan T-F, Lam H-M (2015) Small RNAs in plant responses to abiotic stresses: regulatory roles and study methods. Int J Mol Sci 16:24532–24554PubMedPubMedCentralCrossRefGoogle Scholar
  67. Langmead B (2010) Aligning short sequencing reads with Bowtie. Curr Prot Bioinform 11:7. Scholar
  68. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lee C-Y, Chiu Y-C, Wang L-B, Kuo Y-L, Chuang EY, Lai L-C, Tsai M-H (2013) Common applications of next-generation sequencing technologies in genomic research. Transl Cancer Res 2:33–45Google Scholar
  70. Leng X, Han J, Wang X, Zhao M, Sun X, Wang C, Fang J (2015) Characterization of a calmodulin-binding transcription factor from strawberry. Plant Genome 8Google Scholar
  71. Levitt J (1980a) Freezing resistance-types, measurement and changes. Responses of plants to environmental stress. Academic Press, New York, pp 116–162Google Scholar
  72. Levitt J (1980b) Responses of plants to environmental stresses, vol II. Water, radiation, salt, and other stresses. Academic Press, New York, p 365Google Scholar
  73. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760PubMedPubMedCentralCrossRefGoogle Scholar
  74. Li H, Ruan J, Durbin R (2008a) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18:1851–1858PubMedPubMedCentralCrossRefGoogle Scholar
  75. Li R, Li Y, Kristiansen K, Wang J (2008b) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714PubMedCrossRefPubMedCentralGoogle Scholar
  76. Li B, Zhang C, Cao B, Qin G, Wang W, Tian S (2012) Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids. Amino Acids 43:2469–2480PubMedCrossRefPubMedCentralGoogle Scholar
  77. Li B, Duan H, Li J, Deng XW, Yin W, Xia X (2013) Global identification of miRNAs and targets in Populus euphratica under salt stress. Plant Mol Biol 81:525–539PubMedCrossRefPubMedCentralGoogle Scholar
  78. Liang D, Xia H, Wu S, Ma F (2012a) Genome-wide identification and expression profiling of dehydrin gene family in Malus domestica. Mol Bio Rep 39:10759–10768CrossRefGoogle Scholar
  79. Liang G, He H, Yu D (2012b) Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana. PLoS ONE 7:e48951PubMedPubMedCentralCrossRefGoogle Scholar
  80. Liang L, Zhang B, Yin X-R, Xu C-J, Sun C-D, Chen K-S (2013) Differential expression of the CBF gene family during postharvest cold storage and subsequent shelf-life of peach fruit. Plant Mol Biol Rep 31:1358–1367CrossRefGoogle Scholar
  81. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406PubMedPubMedCentralCrossRefGoogle Scholar
  82. Liu H-H, Tian X, Li Y-J, Wu C-A, Zheng C-C (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843PubMedPubMedCentralCrossRefGoogle Scholar
  83. Liu J, Jennings SF, Tong W, Hong H (2011) Next generation sequencing for profiling expression of miRNAs: technical progress and applications in drug development. J Biomed Sci Eng 4:666PubMedPubMedCentralCrossRefGoogle Scholar
  84. Liu H, Ouyang B, Zhang J, Wang T, Li H, Zhang Y, Yu C, Ye Z (2012) Differential modulation of photosynthesis, signaling, and transcriptional regulation between tolerant and sensitive tomato genotypes under cold stress PloS ONE 7:e50785PubMedPubMedCentralCrossRefGoogle Scholar
  85. Luo X, Gao Z, Shi T, Cheng Z, Zhang Z, Ni Z (2013) Identification of miRNAs and their target genes in peach (Prunus persica L.) using high-throughput sequencing and degradome analysis. PloS ONE 8:e79090PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lurie S, Crisosto C (2005) Chilling injury in peach and nectarine. Postharvest Biol Technol 37:195–208CrossRefGoogle Scholar
  87. Lv D-K, Bai X, Li Y, Ding X-D et al (2010) Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 459:39–47PubMedCrossRefPubMedCentralGoogle Scholar
  88. Maghuly F, Borroto-Fernandez EG, Khan MA, Herndl A, Marzban G, Laimer M (2009) Expression of calmodulin and lipid transfer protein genes in Prunus incisa × serrula under different stress conditions. Tree Physiol 29:437–444PubMedCrossRefPubMedCentralGoogle Scholar
  89. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158PubMedCrossRefPubMedCentralGoogle Scholar
  90. Maragkakis M, Reczko M, Simossis VA, Alexiou P et al (2009) DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 37(Web Server issue):W273–W276PubMedPubMedCentralCrossRefGoogle Scholar
  91. Matzneller P, Götz K-P, Chmielewski F-M (2016) Spring frost vulnerability of sweet cherries under controlled conditions. Int J Biometeorol 60:123–130PubMedCrossRefPubMedCentralGoogle Scholar
  92. Medina J, Bargues M, Terol J, Pérez-Alonso M, Salinas J (1999) The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119:463–470PubMedPubMedCentralCrossRefGoogle Scholar
  93. Meng D, Li Y, Bai Y, Li M, Cheng L (2016) Genome-wide identification and characterization of WRKY transcriptional factor family in apple and analysis of their responses to waterlogging and drought stress. Plant Physiol Biochem 103:71–83PubMedCrossRefPubMedCentralGoogle Scholar
  94. Mikami K, Kanesaki Y, Suzuki I, Murata N (2002) The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp. PCC 6803. Mol Microbiol 46:905–915PubMedCrossRefPubMedCentralGoogle Scholar
  95. Miranda C, Santesteban LG, Royo JB (2005) Variability in the relationship between frost temperature and injury level for some cultivated Prunus species. Hort Sci 40:357–361Google Scholar
  96. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410PubMedCrossRefPubMedCentralGoogle Scholar
  97. Miura K, Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 23(5):4Google Scholar
  98. Miura K, Jin JB, Lee J, Yoo CY et al (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403–1414PubMedPubMedCentralCrossRefGoogle Scholar
  99. Moellering ER, Muthan B, Benning C (2010) Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science 330:226–228PubMedCrossRefPubMedCentralGoogle Scholar
  100. Mondal TK, Sutoh K (2013) OMICS: applications in biomedical, agricultural, and environmental sciences In: Barh D, Zambare V, Azevedo V (eds) Application of next—generation sequencing for abiotic stress tolerance. CRC Press, pp 347–365Google Scholar
  101. Montgomery TA, Howell MD, Cuperus JT, Li D et al (2008a) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141PubMedCrossRefPubMedCentralGoogle Scholar
  102. Montgomery TA, Yoo SJ, Fahlgren N, Gilbert SD et al (2008b) AGO1-miR173 complex initiates phased siRNA formation in plants. Proc Natl Acad Sci USA 105:20055–20062PubMedCrossRefPubMedCentralGoogle Scholar
  103. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264PubMedCrossRefPubMedCentralGoogle Scholar
  104. Morozova O, Hirst M, Marra MA (2009) Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genomics Hum Genet 10:135–151PubMedCrossRefPubMedCentralGoogle Scholar
  105. Mousavi S, Alisoltani A, Shiran B, Fallahi H, Ebrahimie E, Imani A, Houshmand S (2014) De novo transcriptome assembly and comparative analysis of differentially expressed genes in Prunus dulcis Mill. in response to freezing stress. PLoS ONE 9:e104541PubMedPubMedCentralCrossRefGoogle Scholar
  106. Murata N, Sato N, Takahashi N, Hamazaki Y (1982) Compositions and positional distributions of fatty acids in phospholipids from leaves of chilling-sensitive and chilling-resistant plants. Plant Cell Physiol 23:1071–1079Google Scholar
  107. Nilo-Poyanco R, Vizoso P, Sanhueza D, Balic I, Meneses C, Orellana A, Campos-Vargas R (2018) A Prunus persica genome‐wide RNA-seq approach uncovers major differences in the transcriptome among chilling injury sensitive and non-sensitive varieties. Physiol Plant Scholar
  108. Niu Q, Qian M, Liu G, Yang F, Teng Y (2013) A genome-wide identification and characterization of mircoRNAs and their targets in ‘Suli’pear (Pyrus pyrifolia white pear group). Planta 238:1095–1112PubMedCrossRefPubMedCentralGoogle Scholar
  109. Nogueira FT, De Rosa VE, Menossi M, Ulian EC, Arruda P (2003) RNA expression profiles and data mining of sugarcane response to low temperature. Plant Physiol 132:1811–1824PubMedPubMedCentralCrossRefGoogle Scholar
  110. Owens CL, Thomashow MF, Hancock JF, Iezzoni AF (2002) CBF1 orthologs in sour cherry and strawberry and the heterologous expression of CBF1 in strawberry. J Am Soc Hortic Sci 127:489–494CrossRefGoogle Scholar
  111. Paredes M, Quiles MJ (2015) The effects of cold stress on photosynthesis in hibiscus plants. PLoS ONE 10:e0137472PubMedPubMedCentralCrossRefGoogle Scholar
  112. Parsons CS, Day RH (1970) Freezing injury of root crops: beets, carrots, parsnips, radishes, and turnips. Marketing Research Report United States Department of Agriculture 866Google Scholar
  113. Pastore A, Martin SR, Politou A, Kondapalli KC, Stemmler T, Temussi PA (2007) Unbiased cold denaturation: low-and high-temperature unfolding of yeast frataxin under physiological conditions. J Am Chem Soc 129:5374PubMedPubMedCentralCrossRefGoogle Scholar
  114. Pei H, Ma N, Chen J, Zheng Y et al (2013) Integrative analysis of miRNA and mRNA profiles in response to ethylene in rose petals during flower opening. PLoS ONE 8:e64290PubMedPubMedCentralCrossRefGoogle Scholar
  115. Proebsting E Jr, Mills H (1978) Low temperature resistance [frost hardiness] of developing flower buds of six deciduous fruit species. J Am Soc Hortic Sci 103:191–198Google Scholar
  116. Rehmsmeier M, Steffen P, Höchsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10:1507–1517PubMedPubMedCentralCrossRefGoogle Scholar
  117. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626PubMedPubMedCentralCrossRefGoogle Scholar
  118. Rikin A, Atsmon D, Gitler C (1979) Chilling injury in cotton (Gossypium hirsutum L.) Prevention by abscisic acid. Plant Cell Physiol 20:1537–1546CrossRefGoogle Scholar
  119. Rodrigo J (2000) Spring frosts in deciduous fruit trees—morphological damage and flower hardiness. Sci Hortic 85:155–173CrossRefGoogle Scholar
  120. Rowland LJ, Alkharouf N, Darwish O, Ogden EL, Polashock JJ, Bassil NV, Main D (2012) Generation and analysis of blueberry transcriptome sequences from leaves, developing fruit, and flower buds from cold acclimation through deacclimation. BMC Plant Biol 12:46PubMedPubMedCentralCrossRefGoogle Scholar
  121. Shinozaki K, Yamaguchi-Shinozaki K (1999) Molecular responses to cold drought, heat, and salt stress in higher plants, vol 1. RG Landes Company, AustinGoogle Scholar
  122. Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417CrossRefGoogle Scholar
  123. Song JB, Gao S, Wang Y, Li BW, Zhang YL, Yang ZM (2016) miR394 and its target Gene LCR are involved in cold stress response in Arabidopsis. Plant Gene 5:56–64CrossRefGoogle Scholar
  124. Stepulaitiene I, Zebrauskiene A, Stanys V (2013) Frost resistance is associated with development of sour cherry (Prunus cerasus L.) generative buds. Žemdirbystė (Agriculture) 100:175–178CrossRefGoogle Scholar
  125. Sun S-K, Yang N-N, Chen L-J, Irfan M, Zhao X-H, Li T-L (2015) Characterization of LpGPAT Gene in Lilium pensylvanicum and response to cold stress. Biomed Res Int Article ID 792819 Scholar
  126. Sunkar R, Zhu J-K (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019PubMedPubMedCentralCrossRefGoogle Scholar
  127. Sunkar R, Chinnusamy V, Zhu J, Zhu J-K (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309PubMedCrossRefPubMedCentralGoogle Scholar
  128. Szymajda M, Pruski K, Żurawicz E, Sitarek M (2013) Freezing injuries to flower buds and their influence on yield of apricot (Prunus armeniaca L.) and peach (Prunus persica L.). Can J Plant Sci 93:191–198CrossRefGoogle Scholar
  129. Tang Z, Zhang L, Xu C, Yuan S, Zhang F, Zheng Y, Zhao C (2012) Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing. Plant Physiol 159:721–738PubMedPubMedCentralCrossRefGoogle Scholar
  130. Thiebaut F, Rojas CA, Almeida KL, Grativol C et al (2012) Regulation of miR319 during cold stress in sugarcane. Plant Cell Environ 35:502–512CrossRefGoogle Scholar
  131. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50:571–599CrossRefGoogle Scholar
  132. Verde I, Abbott AG, Scalabrin S, Jung S et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494PubMedCrossRefPubMedCentralGoogle Scholar
  133. Vigh L, Los DA, Horvath I, Murata N (1993) The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803. Proc Natl Acad Sci USA 90:9090–9094PubMedCrossRefPubMedCentralGoogle Scholar
  134. Wang L, Chen S, Kong W, Li S, Archbold DD (2006) Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage. Postharvest Biol Technol 41:244–251CrossRefGoogle Scholar
  135. Wang T, Pan H, Wang J, Yang W, Cheng T, Zhang Q (2014) Identification and profiling of novel and conserved microRNAs during the flower opening process in Prunus mume via deep sequencing. Mol Genet Genomics 289:169–183PubMedCrossRefPubMedCentralGoogle Scholar
  136. Wang D, Gao Z, Du P, Xiao W et al (2015) Expression of ABA metabolism-related genes suggests similarities and differences between seed dormancy and bud dormancy of peach (Prunus persica). Front Plant Sci 11(6):1248Google Scholar
  137. Wang F, Guo Z, Li H, Wang M et al (2016a) Phytochrome A and B function antagonistically to regulate cold tolerance via abscisic acid-dependent jasmonate signaling. Plant Physiol 170:459–471PubMedCrossRefPubMedCentralGoogle Scholar
  138. Wang Z, Cao J, Jiang W (2016b) Changes in sugar metabolism caused by exogenous oxalic acid related to chilling tolerance of apricot fruit. Postharvest Biol Technol 114:10–16CrossRefGoogle Scholar
  139. Whiteman TM (1957) Freezing points of fruits, vegetables and florist stocks. Marketing research report no. 196, US Department of AgricultureGoogle Scholar
  140. Wisniewski ME, Bassett CL, Renaut J, Farrell R, Tworkoski T, Artlip TS (2006) Differential regulation of two dehydrin genes from peach (Prunus persica) by photoperiod, low temperature and water deficit. Tree Physiol 26:575–584PubMedCrossRefPubMedCentralGoogle Scholar
  141. Wisniewski M, Norelli J, Artlip T (2015) Overexpression of a peach CBF gene in apple: a model for understanding the integration of growth, dormancy, and cold hardiness in woody plants. Front Plant Sci 6Google Scholar
  142. Wu J, Wang D, Liu Y, Wang L, Qiao X, Zhang S (2014) Identification of miRNAs involved in pear fruit development and quality. BMC Genom 15:1Google Scholar
  143. Xia R, Zhu H, Y-q An, Beers EP, Liu Z (2012) Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol 13:R47PubMedPubMedCentralCrossRefGoogle Scholar
  144. Xu J, Xing S, Cui H, Chen X, Wang X (2015) Genome-wide identification and characterization of the apple (Malus domestica) HECT ubiquitin-protein ligase family and expression analysis of their responsiveness to abiotic stresses. Mol Genet Genomics 1–12Google Scholar
  145. Yadav SK (2010) Cold stress tolerance mechanisms in plants: a review. Agron Sustain Dev 30:515–527CrossRefGoogle Scholar
  146. Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264PubMedPubMedCentralGoogle Scholar
  147. Yang J-H, Qu L-H (2012) DeepBase: annotation and discovery of microRNAs and other noncoding RNAs from deep-sequencing data. Next-generation MicroRNA expression profiling technology: Methods Protocols, pp 233–248Google Scholar
  148. Yang W, Liu X-D, Chi X-J, Wu C-A et al (2011) Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta 233:219–229PubMedCrossRefPubMedCentralGoogle Scholar
  149. Yang C, Li D, Mao D, Liu X et al (2013) Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ 36:2207–2218CrossRefGoogle Scholar
  150. Yao Y, Ni Z, Peng H, Sun F et al (2010) Non-coding small RNAs responsive to abiotic stress in wheat (Triticum aestivum L.). Funct Integr Genomics 10:187–190PubMedPubMedCentralCrossRefGoogle Scholar
  151. Zeller G, Henz SR, Widmer CK, Sachsenberg T, Rätsch G, Weigel D, Laubinger S (2009) Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J 58:1068–1082PubMedCrossRefPubMedCentralGoogle Scholar
  152. Zhang Y (2005) miRU: an automated plant miRNA target prediction server. Nucleic Acids Res 33:W701–W704PubMedPubMedCentralCrossRefGoogle Scholar
  153. Zhang J, Xu Y, Huan Q, Chong K (2009) Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genom 10:1CrossRefGoogle Scholar
  154. Zhang C, Ding Z, Xu X, Wang Q, Qin G, Tian S (2010a) Crucial roles of membrane stability and its related proteins in the tolerance of peach fruit to chilling injury. Amino Acids 39:181–194PubMedCrossRefPubMedCentralGoogle Scholar
  155. Zhang Z, Yu J, Li D, Zhang Z et al (2010b) PMRD: plant microRNA database. Nucleic Acids Res 38:D806–D813PubMedCrossRefPubMedCentralGoogle Scholar
  156. Zhang J, Yang W, Cheng T, Pan H, Zhang Q (2013) Functional and evolutionary analysis of two CBF genes in Prunus mume. Can J Plant Sci 93:455–464CrossRefGoogle Scholar
  157. Zhang S, Wang Y, Li K, Zou Y, Chen L, Li X (2014a) Identification of cold-responsive miRNAs and their target genes in nitrogen-fixing nodules of soybean. Int J Mol Sci 15:13596–13614PubMedPubMedCentralCrossRefGoogle Scholar
  158. Zhang X-N, Li X, Liu J-H (2014b) Identification of conserved and novel cold-responsive microRNAs in trifoliate orange (Poncirus trifoliata (L.) Raf.) using high-throughput sequencing. Plant Mol Biol Rep 32:328–341CrossRefGoogle Scholar
  159. Zhang Y, Zhu X, Chen X, Song C et al (2014c) Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis. BMC Plant Biol 14:271PubMedPubMedCentralCrossRefGoogle Scholar
  160. Zhang Y-H, Rong J-D, Chen L-G, Chen L-Y, He T-Y, Zheng Y-S (2015) Construction of cDNA library from Prunus campanulata leaves and preliminary expressed sequence tag (EST) analysis during cold stress. Biologia 70:1070–1077Google Scholar
  161. Zhao T, Liang D, Wang P, Liu J, Ma F (2012) Genome-wide analysis and expression profiling of the DREB transcription factor gene family in Malus under abiotic stress. Mol Genet Genomics 287:423–436PubMedCrossRefPubMedCentralGoogle Scholar
  162. Zhong W, Gao Z, Zhuang W, Shi T, Zhang Z, Ni Z (2013) Genome-wide expression profiles of seasonal bud dormancy at four critical stages in Japanese apricot. Plant Mol Biol 83:247–264PubMedCrossRefPubMedCentralGoogle Scholar
  163. Zhu H, Xia R, Zhao B, An Y-Q, Dardick CD, Callahan AM, Liu Z (2012) Unique expression, processing regulation, and regulatory network of peach (Prunus persica) miRNAs. BMC Plant Biol 12:1CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Pathology, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
  2. 2.Department of Plant Breeding and Biotechnology, College of AgricultureUniversity of ShahrekordShahrekordIran
  3. 3.Department of Biology, School of SciencesRazi UniversityKermanshahIran

Personalised recommendations