Advertisement

Genomics Assisted Approaches for Improving Abiotic Stress Tolerance in Forage Grasses

  • Leif SkøtEmail author
  • Rhys Kelly
  • Mike W. Humphreys
Chapter
  • 303 Downloads
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 21)

Abstract

Ryegrasses, such as Perennial, Italian and Hybrid ryegrass are globally important forage crops in cool season livestock agriculture, and make up most of the acreage used in grassland agriculture. These forages are grown chiefly in Northwest Europe, New Zealand and temperate regions of Japan, Australia, South Africa and South America. Regions dominated by permanent grassland tend to have reasonably high annual rainfall, while lower rainfall regions are dominated by arable crops. However, extreme and unpredictable weather events are likely to occur more often as a result of climate change. This may include dryer hotter summers, and wetter winters. Ryegrass forage crops would thus be exposed to a wide range of abiotic stresses, including drought, cold, flooding and even heat. Generating varieties which can perform well in response to all these diverse stresses is thus an important and difficult challenge for grass breeders. The advent of low cost, high throughput next generation sequencing and genotyping technologies provide new opportunities to increase the speed with which genetic improvement can happen. The availability of high density genotyping platforms makes genomic selection in forages a realistic prospect. They can also be used with great effect in marker-assisted backcrossing strategies to introgress desirable traits from ecotypes or other donor material. The ability of ryegrass and fescue to hybridize, opens up further opportunities for generating new genetic combinations with beneficial characteristics in terms of abiotic stress tolerance from fescue background with the traditional ryegrass properties in terms of forage quality and biomass yield.

Keywords

Dehydrins Festuca Festulolium Forage crops Fructans Lolium perenne LEA Photoinhibition Ryegrass 

References

  1. Abeynayake SW, Byrne S, Nagy I, Jonavičienė K, Etzerodt TP et al (2015) Changes in Lolium perenne transcriptome during cold acclimation in two genotypes adapted to different climatic conditions. BMC Plant Biol 15:250PubMedPubMedCentralCrossRefGoogle Scholar
  2. Akdemir D, Sanchez JI (2016) Efficient breeding by genomic mating. Front Genet 7:210PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alm V, Busso CS, Ergon Å, Rudi H, Larsen A et al (2011) QTL analyses and comparative genetic mapping of frost tolerance, winter survival and drought tolerance in meadow fescue (Festuca pratensis Huds.). Theor Appl Genet 123:369–382PubMedCrossRefGoogle Scholar
  4. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3(10):e3376PubMedPubMedCentralCrossRefGoogle Scholar
  5. Blackmore T, Thomas I, McMahon R, Powell W, Hegarty M (2015) Genetic–geographic correlation revealed across a broad European ecotypic sample of perennial ryegrass (Lolium perenne) using array-based SNP genotyping. Theor Appl Genet 128:1917–1932PubMedPubMedCentralCrossRefGoogle Scholar
  6. Blackmore T, Thorogood D, Skøt L, McMahon R, Powell W et al (2016) Germplasm dynamics: the role of ecotypic diversity in shaping the patterns of genetic variation in Lolium perenne. Sci Rep 6:22603PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bushman BS, Amundsen KL, Warnke SE, Robins JG, Johnson PG (2016) Transcriptome profiling of Kentucky bluegrass (Poa pratensis L.) accessions in response to salt stress. BMC Genom 17:1–12CrossRefGoogle Scholar
  8. Byrne SL, Nagy I, Pfeifer M, Armstead I, Swain S et al (2015) A synteny-based draft genome sequence of the forage grass Lolium perenne. Plant J 84:816–826PubMedCrossRefGoogle Scholar
  9. Byrne SL, Conaghan P, Barth S, Arojju SK, Casler M (2017) Using variable importance measures to identify a small set of SNPs to predict heading date in perennial ryegrass. Sci Rep 7:3566PubMedPubMedCentralCrossRefGoogle Scholar
  10. Casler MD, Brummer EC (2008) Theoretical expected genetic gains for among-and-within-family selection methods in perennial forage crops. Crop Sci 48:890–902CrossRefGoogle Scholar
  11. Chatterton NJ, Harrison PA, Bennett JH, Asay KH (1989) Carbohydrate partitioning in 185 accessions of Gramineae grown under warm and cool temperatures. J Plant Physiol 134:169–179CrossRefGoogle Scholar
  12. Conaghan P, Casler MD (2011) A theoretical and practical analysis of the optimum breeding system for perennial ryegrass. Irish J Agr Food Res 50:47–63Google Scholar
  13. Demel RA, Dorrepaal E, Ebskamp MJM, Smeekens JCM, de Kruijff B (1998) Fructans interact strongly with model membranes. BBA Biomemb 1375:36–42CrossRefGoogle Scholar
  14. Dinkins RD, Hesse U, Arnaoudova EG, Nagabhyru P, Moore N et al (2012) Transcriptomes of Lolium/Schedonorus/Festuca species, pp 70–76. In: Epichloae, endophytes of cool season grasses: implications, utilization and biology. Proceedings of the 7th International symposium on fungal endophytes of grasses, Lexington, Kentucky, USA, 28 June–1 July 2010Google Scholar
  15. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG et al (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763PubMedCrossRefGoogle Scholar
  16. Eagles CF (1967) Variation in the soluble carbohydrate content of climatic races of Dactylis glomerata (Cocksfoot) at different temperatures. Ann Bot 31:645–651CrossRefGoogle Scholar
  17. Eagles CF, Williams J, Louis DV (1993) Recovery after freezing in Avena sativa L., Lolium perenne L. and L. multiflorum Lam. New Phytol 123:477–483CrossRefGoogle Scholar
  18. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379PubMedPubMedCentralCrossRefGoogle Scholar
  19. Ergon Å, Melby TI, Höglind M, Rognli OA (2016) Vernalization requirement and the chromosomal VRN1-region can affect freezing tolerance and expression of cold-regulated genes in Festuca pratensis. Front Plant Sci 7:207PubMedPubMedCentralCrossRefGoogle Scholar
  20. Farooq M, Wahid A, Kobayashi N (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212CrossRefGoogle Scholar
  21. Fè D, Cericola F, Byrne S, Lenk I, Ashraf B et al (2015) Genomic dissection and prediction of heading date in perennial ryegrass. BMC Genom 16:1–15CrossRefGoogle Scholar
  22. Fè D, Ashraf BH, Pedersen MG, Janss L, Byrne S et al (2016) Accuracy of genomic prediction in a commercial perennial ryegrass breeding program. Plant Genome 9(3).  https://doi.org/10.3835/plantgenome2015.11.011
  23. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930PubMedCrossRefGoogle Scholar
  24. Grinberg NF, Lovatt A, Hegarty M, Lovatt A, Skot et al (2016) Implementation of genomic prediction in Lolium perenne (L.) breeding populations. Front Plant Sci 7.  https://doi.org/10.3389/fpls.2016.00133
  25. Hickey JM, Chiurugwi T, Mackay I, Powell W (2017) Implementing genomic selection in CGIAR breeding programs workshop participants genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nat Genet 49:1297–1303PubMedCrossRefGoogle Scholar
  26. Hincha DK, Hellwege EM, Heyer AG, Crowe JH (2000) Plant fructans stabilize phosphatidylcholine liposomes during freeze-drying. Eur J Biochem 267:535–540PubMedCrossRefGoogle Scholar
  27. Hisano H, Kanazawa A, Kawakami A, Yoshida M, Shimamoto Y et al (2004) Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing. Plant Sci 167:861–868CrossRefGoogle Scholar
  28. Hisano H, Kanazawa A, Yoshida M, Humphreys MO, Iizuka M et al (2008) Coordinated expression of functionally diverse fructosyltransferase genes is associated with fructan accumulation in response to low temperature in perennial ryegrass. New Phytol 178:766–780PubMedCrossRefGoogle Scholar
  29. Hu L, Wang Z, Du H, Huang B (2010) Differential accumulation of dehydrins in response to water stress for hybrid and common bermudagrass genotypes differing in drought tolerance. J Plant Physiol 167:103–109PubMedCrossRefGoogle Scholar
  30. Huang X, Kurata N, Wei X, Wang Z-X, Wang A et al (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature 490:497–501PubMedCrossRefGoogle Scholar
  31. Hulke BS, Bushman BS, Watkins E, Ehlke NJ (2012) Association of freezing tolerance to LpCBFIIIb and LpCBFIIIc gene polymorphism in perennial ryegrass accessions. Crop Sci 52:2023–2029CrossRefGoogle Scholar
  32. Humphreys J, Harper JA, Armstead IP, Humphreys MW (2005) Introgression-mapping of genes for drought resistance transferred from Festuca arundinacea var. glaucescens into Lolium multiflorum. Theor Appl Genet 110:579–587PubMedCrossRefGoogle Scholar
  33. Humphreys MW, Yadav RS, Cairns AJ, Turner LB, Humphreys J et al (2006) A changing climate for grassland research. New Phytol 169:9–26PubMedCrossRefGoogle Scholar
  34. Humphreys MW, Gasior D, Lesniewska-Bocianowska A, Zwierzykowski Z, Rapacz M (2007) Androgenesis as a means of dissecting complex genetic and physiological controls: selecting useful gene combinations for breeding freezing tolerant grasses. Euphytica 158:337–345CrossRefGoogle Scholar
  35. International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716CrossRefGoogle Scholar
  36. International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768CrossRefGoogle Scholar
  37. Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29(4):e25PubMedPubMedCentralCrossRefGoogle Scholar
  38. Jones MB, Finnan J, Hodkinson TR (2015) Morphological and physiological traits for higher biomass production in perennial rhizomatous grasses grown on marginal land. GCB Bioenergy 7:375–385CrossRefGoogle Scholar
  39. Kane KH (2011) Effects of endophyte infection on drought stress tolerance of Lolium perenne accessions from the Mediterranean region. Environ Exp Bot 71:337–344Google Scholar
  40. Kawakami A, Sato Y, Yoshida M (2008) Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance. J Exp Bot 59:793–802PubMedCrossRefGoogle Scholar
  41. Kopecky D, Bartos J, Lukaszewski A, Baird J, Cernoch V et al (2009) Development and mapping of DArT markers within the Festuca - Lolium complex. BMC Genom 10:473CrossRefGoogle Scholar
  42. Kovi MR, Ergon Å, Rognli OA (2016) Freezing tolerance revisited—effects of variable temperatures on gene regulation in temperate grasses and legumes. Curr Opin Plant Biol 33:140–146PubMedCrossRefGoogle Scholar
  43. Kuiper MJ, Davies PL, Walker VK (2001) A theoretical model of a plant antifreeze protein from Lolium perenne. Biophys J 81:3560–3565PubMedPubMedCentralCrossRefGoogle Scholar
  44. Lam H-M, Xu X, Liu X, Chen W, Yang G et al (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059PubMedCrossRefGoogle Scholar
  45. Levitt J (1972) Stress and strain terminology. Responses of plants to environmental stresses, vol 2. Academic Press, London, pp 1–8Google Scholar
  46. Lin Z, Cogan NOI, Pembleton LW, Spangenberg GC, Forster JW et al (2016) Genetic gain and inbreeding from genomic selection in a simulated commercial breeding program for perennial ryegrass. Plant Genome 9(1)CrossRefGoogle Scholar
  47. Lin Z, Shi F, Hayes BJ, Daetwyler HD (2017a) Mitigation of inbreeding while preserving genetic gain in genomic breeding programs for outbred plants. Theor Appl Genet 130:969–980PubMedCrossRefGoogle Scholar
  48. Lin Z, Wang J, Cogan NOI, Pembleton LW, Badenhorst P (2017b) Optimizing resource allocation in a genomic breeding program for perennial ryegrass to balance genetic gain, cost, and inbreeding. Crop Sci 57:243–252CrossRefGoogle Scholar
  49. Liu S, Jiang Y (2010) Identification of differentially expressed genes under drought stress in perennial ryegrass. Physiol Plant 139:375–387PubMedCrossRefGoogle Scholar
  50. Livingston DP, Hincha DK, Heyer AG (2009) Fructan and its relationship to abiotic stress tolerance in plants. Cell Mol Life Sci 66:2007–2023PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lu F, Romay MC, Glaubitz JC, Bradbury PJ, Elshire RJ et al (2015) High-resolution genetic mapping of maize pan-genome sequence anchors. Nat Commun 6:6914PubMedPubMedCentralCrossRefGoogle Scholar
  52. Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ (2013) Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun 4:2320Google Scholar
  53. Macleod CJA, Humphreys MW, Whalley WR, Turner L, Binley A et al (2013) A novel grass hybrid to reduce flood generation in temperate regions. Sci Rep 3:01683Google Scholar
  54. Malinowski DP, Belesky DP (2000) Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Sci 40:923–940CrossRefGoogle Scholar
  55. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedPubMedCentralGoogle Scholar
  56. Morvan-Bertrand A, Boucaud J, Le Saos J, Prud’homme M-P (2001) Roles of the fructans from leaf sheaths and from the elongating leaf bases in the regrowth following defoliation of Lolium perenne L. Planta 213:109–120PubMedCrossRefGoogle Scholar
  57. Panter S, Mouradov A, Badenhorst P, Martelotto L, Griffith M et al (2017) Re-programming photosynthetic cells of perennial ryegrass (Lolium perenne L.) for fructan biosynthesis through transgenic expression of fructan biosynthetic genes under the control of photosynthetic promoters. Agronomy 7:36CrossRefGoogle Scholar
  58. Pfeifer M, Martis M, Asp T, Mayer KFX, Lübberstedt T et al (2013) The perennial ryegrass genomezipper: targeted use of genome resources for comparative grass genomics. Plant Physiol 161:571–582PubMedCrossRefGoogle Scholar
  59. Pollock CJ, Eagles CF, Sims IM (1988) Effect of photoperiod and irradiance changes upon development of freezing tolerance and accumulation of soluble carbohydrate in seedlings of Lolium perenne grown at 2°C. Ann Bot 62:95–100CrossRefGoogle Scholar
  60. Pontis HG (1989) Fructans and cold stress. J Plant Physiol 134:148–150CrossRefGoogle Scholar
  61. Qin F, Sakuma Y, Li J, Liu Q, Li Y-Q et al (2004) Cloning and functional analysis of a novel dreb1/cbf transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45:1042–1052PubMedCrossRefGoogle Scholar
  62. Rapacz M, Gasior D, Zwierzykowski Z, Lesniewska-Bocianowska A, Humphreys MW et al (2004) Changes in cold tolerance and the mechanisms of acclimation of photosystem II to cold hardening generated by anther culture of Festuca pratensis × Lolium multiflorum cultivars. New Phytol 162:105–114CrossRefGoogle Scholar
  63. Resende RM, Casler MD, Vilela de Resende MD (2014) Genomic selection in forage breeding: accuracy and methods. Crop Sci 54:143–156CrossRefGoogle Scholar
  64. Rudi H, Sandve SR, Opseth LM, Larsen A, Rognli OA (2011) Identification of candidate genes important for frost tolerance in Festuca pratensis Huds. by transcriptional profiling. Plant Sci 180:78–85PubMedCrossRefGoogle Scholar
  65. Sandve SR, Rudi H, Asp T, Rognli OA (2008) Tracking the evolution of a cold stress associated gene family in cold tolerant grasses. BMC Evol Biol 8:245PubMedPubMedCentralCrossRefGoogle Scholar
  66. Sandve SR, Kosmala A, Rudi H, Fjellheim S, Rapacz M et al (2011) Molecular mechanisms underlying frost tolerance in perennial grasses adapted to cold climates. Plant Sci 180:69–77PubMedCrossRefGoogle Scholar
  67. Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Ann Rev Plant Biol 55:315–340CrossRefGoogle Scholar
  68. Shen Y-G, Zhang W-K, He S-J, Zhang J-S, Liu Q et al (2003) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106:923–930PubMedCrossRefGoogle Scholar
  69. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227PubMedCrossRefGoogle Scholar
  70. Sidebottom C, Buckley S, Pudney P, Twigg S, Jarman C et al (2000) Phytochemistry: heat-stable antifreeze protein from grass. Nature 406:256PubMedCrossRefGoogle Scholar
  71. Skinner JS, von Zitzewitz J, Szűcs P, Marquez-Cedillo L, Filichkin T et al (2005) Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol 59:533–551PubMedCrossRefGoogle Scholar
  72. Skot L, Grinberg NF (2017) Genomic selection in crop plants. In: Thomas B, Murphy BG, Murray DJ (eds) Encyclopedia of applied plant sciences, vol 3, 2nd edn. Academic Press. Waltham, MA, pp 88–92CrossRefGoogle Scholar
  73. Stočes Š, Ruttink T, Bartoš J, Studer B, Yates S et al (2016) Orthology guided transcriptome assembly of italian ryegrass and meadow fescue for single-nucleotide polymorphism discovery. Plant Genome 9(3)CrossRefGoogle Scholar
  74. Studer B, Byrne S, Nielsen R, Panitz F, Bendixen C et al (2012) A transcriptome map of perennial ryegrass (Lolium perenne L.). BMC Genom 13:140CrossRefGoogle Scholar
  75. Tamura K, Yamada T (2007) A perennial ryegrass CBF gene cluster is located in a region predicted by conserved synteny between Poaceae species. Theor Appl Genet 114:273–283PubMedCrossRefGoogle Scholar
  76. Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12:e1001883PubMedPubMedCentralCrossRefGoogle Scholar
  77. Varshney RK, Singh VK, Hickey JM, Xun X, Marshall DF et al (2016) Analytical and decision support tools for genomics-assisted breeding. Trends Plant Sci 21:354–363PubMedCrossRefGoogle Scholar
  78. Velmurugan J, Mollison E, Barth S, Marshall D, Milne L et al (2016) An ultra-high density genetic linkage map of perennial ryegrass (Lolium perenne) using genotyping by sequencing (GBS) based on a reference shotgun genome assembly. Ann Bot 118:71–87PubMedPubMedCentralCrossRefGoogle Scholar
  79. Vereyken IJ, Chupin V, Demel RA, Smeekens SCM, De Kruijff B (2001) Fructans insert between the headgroups of phospholipids. BBA Biomemb 1510:307–320CrossRefGoogle Scholar
  80. Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223CrossRefGoogle Scholar
  81. Wang Y, Dai Y, Tao X, Wang J-Z, Cheng H-Y et al (2016) Heat shock factor genes of tall fescue and perennial ryegrass in response to temperature stress by RNA-Seq analysis. Front Plant Sci 6Google Scholar
  82. White JW, Andrade-Sanchez P, Gore MA, Bronson KF, Coffelt TA et al (2012) Field-based phenomics for plant genetics research. Field Crops Res 133:101–112CrossRefGoogle Scholar
  83. Wilkins PW, Humphreys MO (2003) Progress in breeding perennial forage grasses for temperate agriculture. J Agric Sci 140:129–150CrossRefGoogle Scholar
  84. Xiong Y, Fei S-Z (2006) Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.). Planta 224:878–888PubMedCrossRefGoogle Scholar
  85. Yamaguchi-Shinosaki K, Shinosaki K (2009) DREB regulons in abiotic-stress-responsive gene expression in plants. In: Yamada T, Spangenberg GC (eds) 5th International symposium on the molecular breeding of forage and turf, Springer Science, Hokkaido University, Japan, pp 15–27Google Scholar
  86. Yu X, Bai G, Liu S, Luo N, Wang Y et al (2013) Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions. J Exp Bot 64:1537–1551PubMedPubMedCentralCrossRefGoogle Scholar
  87. Yu X, Pijut PM, Byrne S, Asp T, Bai G et al (2015) Candidate gene association mapping for winter survival and spring regrowth in perennial ryegrass. Plant Sci 235:37–45PubMedCrossRefGoogle Scholar
  88. Zhang Y, Mian MAR, Bouton JH (2006) Recent molecular and genomic studies on stress tolerance of forage and turf grasses. Crop Sci 46:497–511CrossRefGoogle Scholar
  89. Zhang C, Fei S-Z, Arora R, Hannapel DJ (2010) Ice recrystallization inhibition proteins of perennial ryegrass enhance freezing tolerance. Planta 232:155–164PubMedCrossRefGoogle Scholar
  90. Zhang C, Fei S-Z, Liu P, Ji T, Peng J et al (2017) Transcriptome changes in response to cold acclimation in perennial ryegrass as revealed by a cross-species microarray analysis. Crop Sci 57:S-179–S-191Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwythUK

Personalised recommendations