Advertisement

Genomics and Molecular Breeding for Improving Tolerance to Abiotic Stress in Barley (Hordeum Vulgare L.)

  • Andrea Visioni
  • Ayed Al-Abdallat
  • Jamal Abu Elenien
  • Ramesh Pal Singh Verma
  • Sanjaya Gyawali
  • Michael BaumEmail author
Chapter
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 21)

Abstract

Barley is one of the most important cereal crop in the world, in terms of harvested area, trade value, cattle feed and human nutrition. It is one of the most adapted plant species to marginal environments, where abiotic stresses, such as drought, heat, cold, low fertility and salinity, are prevalent and limit crop productivity. Due to its wide adaptability, barley is often the only crop that can be grown in many countries of West Asia and North Africa, thus representing a very important resource for farmers and the principal feed for livestock in these areas. To cope with these adverse conditions, the selection for barley cultivars with stable and economic yield under variant environments is a primary requirement of any breeding program. Recently, new genomic and molecular tools have increased the number of genes identified in the barley gene pool, involved in abiotic stress tolerance and in the adaptation to unfavorable environments. The complementation of traditional breeding approaches with new analytical selection methodologies is required for future yield gains to meet the global food/feed and industrial demand as well as to cope up with the effects of climate changes. Therefore, exploiting new genomics- and molecular-based breeding strategies to increase barley yield as well as the development of new varieties with improved adaptation to abiotic stresses is crucial. In this chapter, the utilization of genomics- and molecular-based tools and their integration with classical breeding approaches is presented to improve the tolerance to abiotic stresses in barley. Major challenges in breeding for tolerance to major abiotic stresses are described in the beginning, followed by the exploitation and utilization of different genomics and genetic resources, and breeding approaches currently used to produce tolerant varieties. The application of marker-assisted selection and markers discovery using quantitative genetics, association mapping and bioinformatics approaches for abiotic stress tolerances in barley are also highlighted. Furthermore, comparative and functional genomics approaches used to understand abiotic stress tolerance mechanisms in plants and their potential application for improving tolerance to abiotic stresses in barley have been discussed. Finally, challenges and future perspectives for the application of genomics- and molecular-based breeding strategies for barley crop improvement under abiotic stress conditions are overviewed.

Keywords

Association mapping Drought tolerance Frost tolerance Hordeum vulgare Salinity tolerance 

References

  1. Al Abdallat AM, Ayad JY, Abu Elenein JM, Al Ajlouni Z, Harwood WA (2014) Overexpression of the transcription factor HvSNAC1 improves drought tolerance in barley (Hordeum vulgare L). Mol Breed 33:401–414CrossRefGoogle Scholar
  2. Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+antiport in Arabidopsis. Science 285(5431):1256–1258PubMedCrossRefPubMedCentralGoogle Scholar
  3. Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27(6):377–412CrossRefGoogle Scholar
  4. Athar HR, Ashraf M (2009) Strategies for crop improvement against salinity and drought stress: an overview. In: Ashraf M, Ozturk M, Athar Hr (eds) Salinity and water stress, improving crop efficency. Springer, pp 1–16Google Scholar
  5. Badr A, Müller K, Schäfer-Pregl R, El Rabey H, Effgen H, Ibrahim HH, Pozzi C, Rohde W, Salamini F (2000) On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol 17(4):499–510. https://doi.org/101093/oxfordjournalsmolbeva026330
  6. Balasubramanian S, Schwartz C, Singh A, Warthmann N, Kim MC, Maloof JN, Loudet O, Trainer TG, Dabi T, Borevitz JO, Chory J, Wigel D (2009) QTL mapping in new Arabidopsis thaliana advanced intercross-recombinant inbred lines. PLoS ONE 4(2):e40318. https://doi.org/10.1371/journal.pone.0004318PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baum M, Grando S, Backes G, Jahoor A, Sabbagh A, Ceccarelli S (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ × H spontaneum 41-1. Theor Appl Genet 107(7):1215–1225PubMedCrossRefPubMedCentralGoogle Scholar
  8. Baum M, van Korff M, Guo P, Lakew B, Udupa SM, Sayed H, Choumane W, Grando S, Ceccarelli S (2007) Molecular approaches and breeding strategies for drought tolerance in barley. In: Varshney R, Tuberosa R (eds) Genomic assisted crop improvement, vol 2: Genomics applications in crops, pp 51–79Google Scholar
  9. Bellucci E, Bitocchi E, Rau D, Nanni L, Ferradini N, Giardini A et al (2013) Population structure of barley landrace populations and gene-flow with modern varieties. PLoS ONE 8(12):e83891. https://doi.org/101371/journalpone0083891
  10. Berthaud J, Clement J, Emperaire L, Louette D, Pinton F, Sanou J, Second G (2001) The role of local-level gene- flow in enhancing and maintaining genetic diversity In: Cooper HD, Spillane C, Hodgkin T (eds) Broadening the genetic base of crop production. CABI Publishing, p 452Google Scholar
  11. Blum A (1989) Osmotic adjustment and growth of barley genotypes under drought stress. Crop Sci 29(1):230–233CrossRefGoogle Scholar
  12. Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Munns R (2007) HKT1; 5-like cation transporters linked to Na + exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143(4):1918–1928PubMedPubMedCentralCrossRefGoogle Scholar
  13. Caldwell KS, Russell J, Langridge P, Powell W (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172:557–567PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cattivelli L, Baldi P, Crosatti C, Di Fonzo N, Faccioli P, Grossi M, Mastrangelo AM, Pecchioni N, Stanca AM (2002) Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol 48(5–6):649–665CrossRefGoogle Scholar
  15. Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Mare C, Tondelli A, Stanca AM (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Res 105(1–2):1–14CrossRefGoogle Scholar
  16. Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11(2):215–221. https://doi.org/10.1016/j.pbi.2008.01.002PubMedCrossRefPubMedCentralGoogle Scholar
  17. Ceccarelli S, Grando S (1996) Drought as a challenge for the plant breeder. Plant Growth Regul 20(2):149–155CrossRefGoogle Scholar
  18. Ceccarelli S, Grando S, Maatougui M, Michael M, Slash M, Haghparast R, Labdi M (2010) Plant breeding and climate changes. J Agric Sci 148(06):627–637CrossRefGoogle Scholar
  19. Ceccarelli S, Grando S (2002) Plant breeding with farmers requires testing the assumptions of conventional plant breeding: lessons from the ICARDA barley program. In: Cleveland DA, Soleri D (eds) Farmers, scientists and plant breeding: integrating knowledge and practice. CABI Publishing, p 297Google Scholar
  20. Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S (2007) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J Exp Bot 58(15–16):4245–4255PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K + flux: a case study for barley. Plant Cell Environ 28(10):1230–1246CrossRefGoogle Scholar
  22. Chen H, Jiang JG (2010) Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environ Rev 18(NA):309–319CrossRefGoogle Scholar
  23. Cockram J, White J, Zuluaga DL, Smith D, Comadran J, Macaulay M, Luo Z, Kearsey MJ, Werner P, Harrap D et al (2010) Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proc Natl Acad Sci U S A 107(50):21611–21616. https://doi.org/101073/pnas1010179107
  24. Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44(12):1388–1392PubMedCrossRefPubMedCentralGoogle Scholar
  25. Comadran J, Ramsay L, MacKenzie K, Hayes P, Close TJ, Muehlbauer G, Waugh R (2011) Patterns of polymorphism and linkage disequilibrium in cultivated barley. Theor Appl Genet 122(3):523–531PubMedCrossRefPubMedCentralGoogle Scholar
  26. Comadran J, Russell JR, Van Eeuwijk FA, Ceccarelli S, Grando S, Baum M, Al-Yassin A (2008) Mapping adaptation of barley to droughted environments. Euphytica 161(1–2):35–45CrossRefGoogle Scholar
  27. Dhillon T, Pearce SP, Stockinger EJ, Distelfeld A, Li C, Knox AK, Dubcovsky J (2010) Regulation of freezing tolerance and flowering in temperate cereals: the VRN-1 connection. Plant Physiol 153(4):1846–1858PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dubcovsky J, Santa Maria G, Epstein E, Luo MC, Dvořák J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 92(3–4):448–454PubMedCrossRefPubMedCentralGoogle Scholar
  29. FAO (2008) FAO land and plant nutrition management service. http://www.fao.org/ag/agl/agll/spush
  30. FAO (2016) FAO Statistical Division (FAOSTAT) Food and agriculture organization of the United Nations Rome. Access date: 2013-04-22 URL: http://www.fao.org/faostat/en/
  31. Fan Y, Zhou G, Shabala S, Chen ZH, Cai S, Li C, Zhou M (2016) Genome-wide association study reveals a new QTL for salinity tolerance in barley (Hordeum vulgare L). Front Plant Sci 7:946. https://doi.org/10.3389/fpls.2016.00946
  32. Fisk SP, Cuesta-Marcos A, Cistué L, Russell J, Smith KP, Baenziger S, Waugh R (2013) FR-H3: a new QTL to assist in the development of fall-sown barley with superior low temperature tolerance. Theor Appl Genet 126(2):335–347PubMedCrossRefPubMedCentralGoogle Scholar
  33. Forster BP, Ellis RP, Moir J, Talame V, Sanguineti MC, Tuberosa R, Bahri H (2004) Genotype and phenotype associations with drought tolerance in barley tested in North Africa. Ann Appl Biol 144(2):157–168CrossRefGoogle Scholar
  34. Francia E, Barabaschi D, Tondelli A, Laido G, Rizza F, Stanca AM, Busconi M, Fogher C, Stockinger EJ, Pecchioni N (2007) Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theor Appl Genet 115(8):1083–1091PubMedCrossRefPubMedCentralGoogle Scholar
  35. Francia E, Morcia C, Pasquariello M, Mazzamurro V, Milc JA, Rizza F, Terzi V, Pecchioni N (2016) Copy number variation at the HvCBF4–HvCBF2 genomic segment is a major component of frost resistance in barley. Plant Mol Biol 92(1–2):161–175PubMedCrossRefPubMedCentralGoogle Scholar
  36. Francia E, Rizza F, Cattivelli L, Stanca AM, Galiba G, Toth B, Pecchioni N (2004) Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’(winter) × ‘Tremois’(spring) barley map. Theor Appl Genet 108(4):670–680PubMedCrossRefPubMedCentralGoogle Scholar
  37. Galiba G, Vágújfalvi A, Li CX, Soltész A, Dubcovsky J (2009) Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Sci 176:12–19CrossRefGoogle Scholar
  38. Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99(25):15898–15903PubMedCrossRefPubMedCentralGoogle Scholar
  39. Guo P, Baum M, Grando S, Ceccarelli S, Bai G, Li R, von Korff M, Varshney KR, Graner A, Valkoun J (2009) Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J Exp Bot 60(12):3531–3544. https://doi.org/101093/jxb/erp1
  40. Guo W, Urizar E, Kralikova M, Mobarec JC, Shi L, Filizola M, Javitch JA (2008) Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO J 27(17):2293–2304PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gürel F, Öztürk ZN, Uçarlı C, Rosellini D (2016) Barley genes as tools to confer abiotic stress tolerance in crops. Front Plant Sci 7:1137. https://doi.org/10.3389/fpls.2016.01137 (eCollection 2016)
  42. Harlan JR, Zohary D (1966) Distribution of wild wheats and barley. Science 153(3740):1074–1080. https://doi.org/101126/science15337401074
  43. Hayes PM, Blake T, Chen TH, Tragoonrung S, Chen F, Pan A, Liu B (1993) Quantitative trait loci on barley (Hordeum vulgare L) chromosome 7 associated with components of winter hardiness. Genome 36(1):66–71PubMedCrossRefPubMedCentralGoogle Scholar
  44. Hayes P, Szűcs P (2006) Disequilibrium and association in barley: thinking outside the glass. Proc Natl Acad Sci U S A 103(49):18385–18386PubMedCrossRefPubMedCentralGoogle Scholar
  45. Horsley RD, Franckowiak JD, Schwarz PB (2009) Barley. In: Carena MJ (ed) Cereals. Springer, US, pp 227–250CrossRefGoogle Scholar
  46. Huang S, Spielmeyer W, Lagudah ES, Munns R (2008) Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. J Exp Bot 59(4):927–937PubMedCrossRefPubMedCentralGoogle Scholar
  47. International Barley Genome Sequencing Consortium (IBGSC), Mayer KF, Waugh R, Brown JW, Schulman A, Langridge P, Platzer M, Fincher GB, Muehlbauer GJ, Sato K et al (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716Google Scholar
  48. Jarvis D, Hodgkin T (2000) Farmer decision-making and genetic diversity: linking multi-disciplinary research to implementation on farm In: Bush S (ed) Genes in the field: On-farm conservation IDRC/IPGRI/ Lewis Publishers, Washington DCGoogle Scholar
  49. Kalladan R, Worch S, Rolletschek H, Harshavardhan VT, Kuntze L, Seiler C, Röder MS (2013) Identification of quantitative trait loci contributing to yield and seed quality parameters under terminal drought in barley advanced backcross lines. Mol Breed 32(1):71–90CrossRefGoogle Scholar
  50. Karamanos AJ, Papatheohari AY (1999) Assessment of drought resistance of crop genotypes by means of the water potential index. Crop Sci 39(6):1792–1797CrossRefGoogle Scholar
  51. Karsai I, Meszaros K, Hayes PM, Bedo Z (1997) Effects of loci on chromosomes 2 (2H) and 7 (5H) on developmental patterns in barley (Hordeum vulgare L) under different photoperiod regimes. Theor Appl Genet 94:612–618CrossRefGoogle Scholar
  52. Knox AK, Dhillon T, Cheng H, Tondelli A, Pecchioni N, Stockinger EJ (2010) CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. Theor Appl Genet 121(1):21–35PubMedCrossRefPubMedCentralGoogle Scholar
  53. Von Korff M, Grando S, Del Greco A, This D, Baum M, Ceccarelli S (2008) Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theor Appl Genet 117(5):653–669CrossRefGoogle Scholar
  54. Von Korff M, Wang H, Léon J, Pillen K (2006) AB-QTL analysis in spring barley: II Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp spontaneum). Theor Appl Genet 112(7):1221–1231CrossRefGoogle Scholar
  55. Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9(1):29. https://doi.org/10.1186/1746-4811-9-29PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lakew B, Eglinton J, Henry RJ, Baum M, Grando S, Ceccarelli S (2011) The potential contribution of wild barley (ssp) germplasm to drought tolerance of cultivated barley (ssp). Field Crops Res 120(1):161–168CrossRefGoogle Scholar
  57. Lawrenson T, Shorinola O, Stacey N, Li C, Østergaard L, Patron N, Harwood W (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258. https://doi.org/10.1186/s13059-015-0826-7
  58. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406PubMedPubMedCentralCrossRefGoogle Scholar
  59. Long NV, Dolstra O, Malosetti M, Kilian B, Graner A, Visser RG, van der Linden CG (2013) Association mapping of salt tolerance in barley (Hordeum vulgare L). Theor Appl Genet 126(9):2335–2351PubMedCrossRefPubMedCentralGoogle Scholar
  60. Mano Y, Takeda K (1997) Diallel analysis of salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L). Jpn J Breed 47(3):03–209CrossRefGoogle Scholar
  61. Marttila S, Tenhola T, Mikkonen A (1996) A barley (Hordeum vulgare L) LEA3 protein, HVA1, is abundant in protein storage vacuoles. Planta 199(4):602–611CrossRefGoogle Scholar
  62. Matin MA, Brown JH, Ferguson H (1989) Leaf water potential, relative water content, and diffusive resistance as screening techniques for drought resistance in barley. Agron J 81(1):100–105CrossRefGoogle Scholar
  63. Maurer A, Draba V, Jiang Y, Schnaithmann F, Sharma R, Schumann E, Kilian B, Reif JC, Pillen K (2015) Modelling the genetic architecture of flowering time control in barley through nested association mapping. BMC Genom 16:290. https://doi.org/10.1186/s12864-015-1459-7
  64. Mir RR, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney RK (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125(4):625–645PubMedPubMedCentralCrossRefGoogle Scholar
  65. Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotech J 9(2):230–249CrossRefGoogle Scholar
  66. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250PubMedCrossRefPubMedCentralGoogle Scholar
  67. Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043PubMedCrossRefPubMedCentralGoogle Scholar
  68. Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Plett D (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnol 30(4):360–364CrossRefGoogle Scholar
  69. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681PubMedPubMedCentralCrossRefGoogle Scholar
  70. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185PubMedCrossRefPubMedCentralGoogle Scholar
  71. Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O, Beer K, Britigan BE (2011) Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334(6058):982–986PubMedPubMedCentralCrossRefGoogle Scholar
  72. Nguyen TX, Sticklen M (2013) Barley HVA1 gene confers drought and salt tolerance in transgenic maize (Zea mays L). Adv Crop Sci Tech 1:1. https://doi.org/10.4172/acst.1000105
  73. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349PubMedCrossRefPubMedCentralGoogle Scholar
  74. Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G, Kilian B, Graner A (2012) Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol 12(1):16PubMedPubMedCentralCrossRefGoogle Scholar
  75. Pennisi E (2008) The blue revolution, drop by drop, gene by gene. Science 320(5873):171–173. https://doi.org/101126/science1094305
  76. Pourkheirandish M, Komatsuda T (2007) The importance of barley genetics and domestication in a global perspective. Ann Bot 100(5):999–1008. https://doi.org/101093/aob/mcm139
  77. Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WT, Macaulay M, MacKenzie K, Simpson C, Fuller J, Bonar N et al (2011) INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat Genet 43:169–172. 101038/ng745PubMedCrossRefPubMedCentralGoogle Scholar
  78. Rawson HM, Constable GA (1980) Carbon production of sunflower cultivars in field and controlled environments, I Photosynthesis and transpiration of leaves, stems and heads. Funct Plant Biol 7(5):555–573CrossRefGoogle Scholar
  79. Reinheimer JL, Barr AR, Eglinton JK (2004) QTL mapping of chromosomal regions conferring reproductive frost tolerance in barley (Hordeum vulgare L). Theor Appl Genet 109(6):1267–1274PubMedCrossRefPubMedCentralGoogle Scholar
  80. Richards RA, Rebetzke GJ, Condon AG, van Herwaarden AF (2002) Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci 42:111–121PubMedCrossRefPubMedCentralGoogle Scholar
  81. Rizza F, Badeck FW, Cattivelli L, Lidestri O, Fonzo ND, Stanca AM (2004) Use of a water stress index to identify barley genotypes adapted to rainfed and irrigated conditions. Crop Sci 44:2127–2137CrossRefGoogle Scholar
  82. Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Graner A (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop. Proc Natl Acad Sci U S A 103(49):18656–18661PubMedCrossRefPubMedCentralGoogle Scholar
  83. Saade S, Maurer A, Shahid M, Oakey H, Schmöckel SM, Negrão N, Pillen K, Tester M (2016) Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Sci Rep 6(32586):001. https://doi.org/101038/srep32586
  84. Sannemann W, Huang BE, Mathew B et al (2015) Multi-parent advanced generation inter-cross in barley: High-resolution quantitative trait locus mapping for flowering time as a proof of concept. Mol Breed 35:86. https://doi.org/101007/s11032-015-0284-7
  85. Sayed MA, Schumann H, Pillen K, Na AA, Léon J (2012) AB-QTL analysis reveals new alleles associated to proline accumulation and leaf wilting under drought stress conditions in barley (Hordeum vulgare L). BMC Genet 13(1):61PubMedPubMedCentralCrossRefGoogle Scholar
  86. Schnaithmann F, Kopahnke D, Pillen K (2014) A first step toward the development of a barley NAM population and its utilization to detect QTLs conferring leaf rust seedling resistance. Theor Appl Genet 127(7):1513–1525PubMedCrossRefPubMedCentralGoogle Scholar
  87. Shabala S, Cuin TA, Pang J, Percey W, Chen Z, Wegner LH (2010) Xylem ionic relations and salinity tolerance in barley. Plant J 61(5):839–853PubMedCrossRefPubMedCentralGoogle Scholar
  88. Shavrukov Y, Gupta NK, Miyazaki J, Baho MN, Chalmers KJ, Tester M, Collins NC (2010) HvNax3—a locus controlling shoot sodium exclusion derived from wild barley (Hordeum vulgare ssp spontaneum). Funct Integr Genomics 10(2):277–291PubMedCrossRefPubMedCentralGoogle Scholar
  89. Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14(2):465–477PubMedPubMedCentralCrossRefGoogle Scholar
  90. Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3(3):217–223PubMedCrossRefPubMedCentralGoogle Scholar
  91. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227. https://doi.org/101093/jxb/erl164
  92. Skinner JS, Szűcs P, von Zitzewitz J, Marquez-Cedillo L, Filichkin T, Stockinger EJ, Hayes PM (2006) Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis. Theor Appl Genet 112(5):832–842PubMedCrossRefPubMedCentralGoogle Scholar
  93. Skinner JS, von Zitzewitz J, Szucs P, Marquez-Cedillo L, Filichkin T, Amundsen K, Stockinger EJ, Thomashow MF, Chen THH, Hayes PM (2005) Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol 59:533–551CrossRefGoogle Scholar
  94. Soltész A, Smedley M, Vashegyi I, Galiba G, Harwood W, Vágújfalvi A (2013) Transgenic barley lines prove the involvement of TaCBF14 and TaCBF15 in the cold acclimation process and in frost tolerance. J Exp Bot 64(7):1849–1862PubMedPubMedCentralCrossRefGoogle Scholar
  95. Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94(3):1035–1040PubMedCrossRefPubMedCentralGoogle Scholar
  96. Stockinger EJ, Skinner JS, Gardner KG, Francia E, Pecchioni N (2007) Expression levels of barley CBF genes at the frost resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2. Plant J 51(2):308–321PubMedCrossRefPubMedCentralGoogle Scholar
  97. Talamè V, Sanguineti MC, Chiapparino E, Bahri H, Salem M, Forster BP, Tuberosa R (2004) Identification of Hordeum spontaneum QTL alleles improving field performance of barley grown under rainfed conditions. Ann Appl Biol 144(3):309–319CrossRefGoogle Scholar
  98. Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl–ions on barley growth under salinity stress. J Exp Bot 62(6):2189–2203PubMedPubMedCentralCrossRefGoogle Scholar
  99. Teulat B, Borries C, This D (2001) New QTLs identified for plant water status, water-soluble carbohydrate and osmotic adjustment in a barley population grown in a growth-chamber under two water regimes. Theor Appl Genet 103(1):161–170CrossRefGoogle Scholar
  100. Teulat B, Merah O, Sirault X, Borries C, Waugh R, This D (2002) QTLs for grain carbon isotope discrimination in field-grown barley. Theor Appl Genet 106(1):118–126PubMedCrossRefPubMedCentralGoogle Scholar
  101. Teulat B, This D, Khairallah M, Borries C, Ragot C, Sourdille P, Charrier A (1998) Several QTLs involved in osmotic-adjustment trait variation in barley (Hordeum vulgare L). Theor Appl Genet 96(5):688–698CrossRefGoogle Scholar
  102. Teulat B, Zoumarou-Wallis N, Rotter B, Salem MB, Bahri H, This D (2003) QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theor Appl Genet 108(1):181–188PubMedCrossRefPubMedCentralGoogle Scholar
  103. Tondelli A, Francia E, Barabaschi D, Aprile A, Skinner JS, Stockinger EJ, Pecchioni N (2006) Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor Appl Genet 112(3):445–454PubMedCrossRefPubMedCentralGoogle Scholar
  104. Tondelli A, Francia E, Barabaschi D, Pasquariello M, Pecchioni N (2011) Inside the CBF locus in Poaceae. Plant Sci 180(1):39–45PubMedCrossRefPubMedCentralGoogle Scholar
  105. Tondelli A, Francia E, Visioni A, Comadran J, Mastrangelo AM, Akar T, van Eeuwijk FA (2014b) QTLs for barley yield adaptation to Mediterranean environments in the ‘Nure’ × ‘Tremois’ biparental population. Euphytica 197(1):73–86CrossRefGoogle Scholar
  106. Tondelli A, Pagani D, Ghafoori IN, Rahimi M, Ataei R, Rizza F, Flavell AJ, Cattivelli L (2014a) Allelic variationat Fr-H1/Vrn-H1 and Fr-H2 loci is the main determinant of frost tolerance in spring barley. Environ Exp Bot 106:148–155. https://doi.org/10.1016/j.envexpbot.2014.02.014CrossRefGoogle Scholar
  107. Tondelli A, Xu X, Moragues M, Sharma R, Schnaithmann F, Ingvardsen C, Schulman AH et al (2013) Structural and temporal variation in genetic diversity of European spring two-row barley cultivars and association mapping of quantitative traits. Plant Genome 6(2) doi: https://doi.org/10.3835/plantgenome2013.03.0007CrossRefGoogle Scholar
  108. Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, Dennis ES (2003) MADS box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci U S A 100(22):13099–13104PubMedCrossRefPubMedCentralGoogle Scholar
  109. Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310(5750):1031–1034PubMedCrossRefPubMedCentralGoogle Scholar
  110. Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17(2):113–122PubMedCrossRefPubMedCentralGoogle Scholar
  111. Varshney RK, Paulo MJ, Grando S, Van Eeuwijk FA, Keizer LCP, Guo P, Graner A (2012) Genome wide association analyses for drought tolerance related traits in barley (Hordeum vulgare L). Field Crops Res 126:171–180CrossRefGoogle Scholar
  112. Visioni A, Tondelli A, Francia E, Pswarayi A, Malosetti M, Russell J, Thomas W, Waugh R, Pecchioni N, Romagosa I, Comadran J (2013) Genome-wide association mapping of frost tolerance in barley (Hordeum vulgare L.). BMC Genom 14(1):424CrossRefGoogle Scholar
  113. Vágújfalvi A, Galiba G, Cattivelli L, Dubcovsky J (2003) The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A. Mol Genet Genom 269(1):60–67Google Scholar
  114. von Zitzewitz J, Cuesta-Marcos A, Condon F, Castro AJ, Chao S, Corey A, Filichkin T, Fisk SP, Gutierrez L, Haggard K et al (2011) The genetics of winter hardiness in barley: perspectives from genome-wide association mapping. Plant Genome 4:76–91. https://doi.org/103835/plantgenome2010120030
  115. Walia H, Wilson C, Zeng L, Ismail AM, Condamine P, Close TJ (2007) Genome-wide transcriptional analysis of salinity stressed japonica and indica rice genotypes during panicle initiation stage. Plant Mol Biol 63(5):609–623PubMedCrossRefPubMedCentralGoogle Scholar
  116. Wang H, Smith KP, Combs E, Blake T, Horsley RD, Muehlbauer GJ (2012) Effect of population size and unbalanced data sets on QTL detection using genome-wide association mapping in barley breeding germplasm. Theor Appl Genet 124(1):111–124PubMedCrossRefPubMedCentralGoogle Scholar
  117. Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, dit Frey NF, Leung J (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1(2):198–217PubMedCrossRefPubMedCentralGoogle Scholar
  118. Wehner GG, Balko CC, Enders MM, Humbeck KK, Ordon F (2015) Identification of genomic regions involved in tolerance to drought stress and drought stress induced leaf senescence in juvenile barley. BMC Plant Biol 15(1):125PubMedPubMedCentralCrossRefGoogle Scholar
  119. White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92(4):487–511PubMedPubMedCentralCrossRefGoogle Scholar
  120. Wu D, Qiu L, Xu L, Ye L, Chen M, Sun D, Zhang G (2011) Genetic variation of HvCBF genes and their association with salinity tolerance in Tibetan annual wild barley. PLoS ONE 6(7):e22938PubMedPubMedCentralCrossRefGoogle Scholar
  121. Xiong L (2007) Abscisic acid in plant response and adaptation to drought and salt stress. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in molecular breeding toward drought and salt tolerant crops. Springer, Netherlands, pp 193–221CrossRefGoogle Scholar
  122. Yan L, Loukoianov A, Blechl A, Tranquilli G, RamakrishnaW SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303(5664):1640–1644PubMedPubMedCentralCrossRefGoogle Scholar
  123. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci U S A 100(10):6263–6268PubMedCrossRefPubMedCentralGoogle Scholar
  124. Zhou G, Johnson P, Ryan PR, Delhaize E, Zhou M (2012) Quantitative trait loci for salinity tolerance in barley (Hordeum vulgare L). Mol Breed 29(2):427–436CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrea Visioni
    • 1
  • Ayed Al-Abdallat
    • 1
    • 2
  • Jamal Abu Elenien
    • 2
  • Ramesh Pal Singh Verma
    • 1
  • Sanjaya Gyawali
    • 1
    • 3
  • Michael Baum
    • 1
    Email author
  1. 1.International Center for Agricultural Research, Dry Areas (ICARDA)RabatMorocco
  2. 2.Department of Horticulture and Crop Science, Faculty of AgricultureThe University of JordanAmmanJordan
  3. 3.Department of Plant ScienceUniversity of ManitobaWinnipegCanada

Personalised recommendations