Skip to main content

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 21))

Abstract

Bread wheat (Triticum aestivum L.) is one of the major crops for human nutrition and an important one for food security. However, wheat yields are highly dependent upon environmental conditions and are affected by various types of abiotic stresses. One strategy for improving wheat yield stability across environments is to harness hybrid vigour. Estimates of yield improvements associated with hybrid vigour in wheat range from 5 to over 20%, which needs to be further enhanced to meet the future global demand. This yield advantage comes with improved yield stability under both biotic and abiotic stress conditions. This chapter focuses on the current status of hybrid wheat breeding, including hybrid seed production systems, hybrid performance under abiotic stresses and prediction of hybrid performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adugna A, Nanda GS, Singh K, Bains NS (2004) A comparison of cytoplasmic and chemically-induced male sterility systems for hybrid seed production in wheat (Triticum aestivum L.). Euphytica 135:297–304

    Article  Google Scholar 

  • Baga M, Chodaparambil SV, Limin AE, Pecar M, Fowler DB, Chibbar RN (2007) Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Funct Integr Genomics 7:53–68

    Article  CAS  Google Scholar 

  • Bahl PN, Maan SS (1973) Chromosomal location of male fertility restoring genes in 6 lines of common wheat. Crop Sci 13:317–320

    Article  Google Scholar 

  • Barlow KK, Driscoll CJ (1981) Linkage studies involving 2 chromosomal male-sterility mutants in hexaploid wheat. Genetics 98:791–799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T (2012) Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor Appl Genet 125:1473–1485

    Article  Google Scholar 

  • Bing-Hua L, Jing-yang D (1986) A dominant gene for male sterility in wheat. Plant Breed 97:204–209

    Article  Google Scholar 

  • Birchler JA, Auger DL, Riddle NC (2003) In search of the molecular basis of heterosis. Plant Cell 15:2236–2239

    Article  CAS  Google Scholar 

  • Boer R, Campbell LC, Fletcher DJ (1993) Characteristics of frost in a major wheat-growing region of Australia. Aus J Agri Res 44:1731–1743

    Article  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    Article  CAS  Google Scholar 

  • Bruce AB (1910) The Mendelian theory of heredity and the augmentation of vigor. Science 32:627–628

    Article  CAS  Google Scholar 

  • Chen ZJ (2013) Genomic and epigenetic insights into the molecular bases of heterosis. Nat Rev Genet 14:471–482

    Article  CAS  Google Scholar 

  • Coors JG, Pandey S (eds) (1999) The genetics and exploitation of heterosis in crops. American Society of Agronomy, Crop Science Society of America, Wisconsin

    Google Scholar 

  • Crow JF (1948) Alternative hypotheses of hybrid vigor. Genetics 33:477–487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis BC, Johnston DR (1969) Hybrid wheat. Sci Am 220:21–29

    Article  CAS  Google Scholar 

  • de Vries A (1974) Some aspects of cross-pollination in wheat (Triticum aestivum L.). 4. Seed set on male sterile plants as influenced by distance from the pollen source, pollinator: Male sterile ratio and width of the male sterile strip. Euphytica 23:601–622

    Article  Google Scholar 

  • DeBlock M, Debrouwer D, Moens T (1997) The development of a nuclear male sterility system in wheat. Expression of the barnase gene under the control of tapetum specific promoters. Theor Appl Genet 95:125–131

    Article  CAS  Google Scholar 

  • Driscoll CJ (1972) Xyz system of producing hybrid wheat. Crop Sci 12:516–517

    Article  Google Scholar 

  • Driscoll CJ (1975) Cytogenetic analysis of 2 chromosomal male-sterility mutants in hexaploid wheat. Aust J Biol Sci 28:413–416

    Article  Google Scholar 

  • Duvick DN (1959) The use of cytoplasmic male-sterility in hybrid seed production. Econ Bot 13:167–195

    Article  Google Scholar 

  • FAO (2009) How to feed the world in 2050. http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf

  • Fischer S, Mohring J, Schon CC, Piepho HP, Klein D, Schipprack W, Utz HF, Melchinger AE, Reif JC (2008) Trends in genetic variance components during 30 years of hybrid maize breeding at the University of Hohenheim. Plant Breed 127:446–451

    Article  Google Scholar 

  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61:3211–3222

    Article  CAS  Google Scholar 

  • Fokar M, Nguyen HT, Blum A (1998) Heat tolerance in spring wheat. I. Estimating cellular thermotolerance and its heritability. Euphytica 104:1–8

    Article  Google Scholar 

  • Galiba G, Quarrie SA, Sutka J, Morgounov A, Snape JW (1995) RFLP mapping of the vernalization (Vrn1) and frost-resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet 90:1174–1179

    Article  CAS  Google Scholar 

  • Gowda M, Longin CFH, Lein V, Reif JC (2012) Relevance of specific versus general combining ability in winter wheat. Crop Sci 52:2494–2500

    Article  Google Scholar 

  • Griffing B (1956) Concept of general and specific combining ability in relation to diallel crossing systems. Aust J Biol Sci 9:463–493

    Article  Google Scholar 

  • GRiSP (2013) Rice almanac. Baños L (ed) International Rice Research Institute, Philippines. http://passthrough.fw-notify.net/download/347391/, http://books.irri.org/9789712203008_content.pdf

  • Groszmann M, Greaves IK, Fujimoto R, Peacock WJ, Dennis ES (2013) The role of epigenetics in hybrid vigour. Trends Genet 29:684–690

    Article  CAS  Google Scholar 

  • Gu L, Hanson PJ, Mac Post W, Kaiser DP, Yang B, Nemani R, Pallardy SG, Meyers T (2008) The 2007 eastern US spring freezes: increased cold damage in a warming world? Bioscience 58:253–262

    Article  Google Scholar 

  • Havey MJ (2004) The use of cytoplasmic male sterility for hybrid seed production. In: Daniell H, Chase C (eds) Molecular biology and biotechnology of plant organelles. Springer, pp 623–634

    Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Hoffstetter A, Cabrera A, Huang M, Sneller C (2016) Optimizing training population data and validation of genomic selection for economic traits in soft winter wheat. G3-Genes Genom Genet 6:2919–2928

    Article  Google Scholar 

  • IWGSC (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788

    Article  Google Scholar 

  • IWGSC (2016) Wheat genome sequencing gets major boost. http://www.wheatgenome.org/News/Press-releases/Wheat-Genome-Sequencing-Gets-Major-Boost

  • Jordaan JP (1996) Hybrid wheat: advances and challenges. In: Reynolds MP, Rajaram S, McNab A (eds) Increasing yield potential in wheat: breaking the barriers. CIMMYT, Mexico, pp 66–75

    Google Scholar 

  • JoÅ¡t M, Glatki-JoÅ¡t M, Hrust V (1975) Influence of T. timopheevi cytoplasm on characters of male sterile common wheat:3. The plant morphology and kernel characters. Cereal Res Commun 3:15–26

    Google Scholar 

  • Kempe K, Rubtsova M, Riewe D, Gils M (2013) The production of male-sterile wheat plants through split barnase expression is promoted by the insertion of introns and flexible peptide linkers. Transgenic Res 22:1089–1105

    Article  CAS  Google Scholar 

  • Kempe K, Rubtsova M, Gils M (2014) Split-gene system for hybrid wheat seed production. Proc Natl Acad Sci U S A 111:9097–9102

    Article  CAS  Google Scholar 

  • Langridge P, Paltridge N, Fincher G (2006) Functional genomics of abiotic stress tolerance in cereals. Brief Funct Genomics Proteom 4:343–354

    Article  CAS  Google Scholar 

  • LeGouis J, Pluchard P (1996) Genetic variation for nitrogen use efficiency in winter wheat (Triticum aestivum L). Euphytica 92:221–224

    Article  Google Scholar 

  • Li J, Yuan L (2000) Hybrid rice: genetics, breeding, and seed production. In: Janick J (ed) Plant breeding reviews, vol 17. Wiley, pp 15–158

    Google Scholar 

  • Longin CF, Muhleisen J, Maurer HP, Zhang H, Gowda M, Reif JC (2012) Hybrid breeding in autogamous cereals. Theor Appl Genet 125:1087–1096

    Article  Google Scholar 

  • Longin CF, Gowda M, Muhleisen J, Ebmeyer E, Kazman E, Schachschneider R, Schacht J, Kirchhoff M, Zhao Y, Reif JC (2013) Hybrid wheat: quantitative genetic parameters and consequences for the design of breeding programs. Theor Appl Genet 126:2791–2801

    Article  Google Scholar 

  • Melchinger AE, Gumber RK (1998) Overview of heterosis and heterotic groups in agronomic crops. In: Larnkey KR, Staub JE (eds) Concepts and breeding of heterosis in crop plants. CSSA Special Publication, pp 29–44

    Google Scholar 

  • Mendelsohn R, Nordhaus WD, Shaw D (1994) The impact of global warming on agriculture—a ricardian analysis. Am Econ Rev 84:753–771

    Google Scholar 

  • Mette MF, Gils M, Longin CFH, Reif JC (2015) Hybrid breeding in wheat. In: Ogihara Y, Takumi S, Handa H (eds) Advacnes in wheat genetics: from genome to field. Springer, Tokyo

    Google Scholar 

  • Miedaner T, Zhao YS, Gowda M, Longin CFH, Korzun V, Ebmeyer E, Kazman E, Reif JC (2013) Genetic architecture of resistance to Septoria tritici blotch in European wheat. BMC genomics 14

    Google Scholar 

  • Mohammadi V, Zali AA, Bihamta MR (2008) Mapping QTLs for heat tolerance in wheat. J Agric Sci Technol 10:261–267

    Google Scholar 

  • Muhleisen J, Piepho HP, Maurer HP, Longin CF, Reif JC (2014) Yield stability of hybrids versus lines in wheat, barley, and triticale. Theor Appl Genet 127:309–316

    Article  Google Scholar 

  • Mukai Y, Tsunewaki K (1979) Basic studies on hybrid wheat breeding:VIII. A new male sterility-fertility restoration system in common wheat utilizing the cytoplasms of Aegilops kotschyi and Ae. variabilis. Theor Appl Genet 54:153–160

    Article  CAS  Google Scholar 

  • Murai K (1997) Effects of Aegilops crassa cytoplasm on the agronomic characters in photoperiod-sensitive CMS wheat lines and F-1 hybrids. Breed Sci 47:321–326

    Google Scholar 

  • Murai K (1998) F-1 seed production efficiency by using photoperiod-sensitive cytoplasmic male sterility and performance of F-1 hybrid lines in wheat. Breed Sci 48:35–40

    Google Scholar 

  • Murai K, Tsunewaki K (1993) Photoperiod-sensitive cytoplasmic male-sterility in wheat with Aegilops crassa cytoplasm. Euphytica 67:41–48

    Article  Google Scholar 

  • Murai K, Tsutui I, Kawanishi Y, Ikeguchi S, Yanaka M, Ishikawa N (2008) Development of photoperiod-sensitive cytoplasmic male sterile (PCMS) wheat lines showing high male sterility under long-day conditions and high seed fertility under short-day conditions. Euphytica 159:315–323

    Article  Google Scholar 

  • Nguyen V, Fleury D, Timmins A, Laga H, Hayden M, Mather D, Okada T (2015) Addition of rye chromosome 4R to wheat increases anther length and pollen grain number. Theor Appl Genet 128:953–964

    Article  CAS  Google Scholar 

  • Oettler G, Tams SH, Utz HF, Bauer E, Melchinger AE (2005) Prospects for hybrid breeding in winter triticale:I. Heterosis and combining ability for agronomic traits in European elite germplasm. Crop Sci 45:1476–1482

    Article  Google Scholar 

  • Pickett AA (1993) Hybrid wheat results and problems. Paul Parey Scientific Publishers, Berlin

    Google Scholar 

  • Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas JJ, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001–1021

    Article  Google Scholar 

  • Poland J, Endelman J, Dawson J, Rutkoski J, Wu SY, Manes Y, Dreisigacker S, Crossa J, Sanchez-Villeda H, Sorrells M, Jannink JL (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103–113

    Article  CAS  Google Scholar 

  • Reif JC, Gumpert FM, Fischer S, Melchinger AE (2007) Impact of interpopulation divergence on additive and dominance variance in hybrid populations. Genetics 176:1931–1934

    Article  CAS  Google Scholar 

  • Riaz R, Chowdhry MA (2003) Genetic analysis of some economic traits of wheat under drought condition. Asian J Plant Sci 2:790–796

    Article  Google Scholar 

  • Russell K, Sandall L (2005) Corn breeding: lessons from the past. http://passel.unl.edu/pages/informationmodule.php?idinformationmodule=1075412493&topicorder=10&maxto=12&minto=1

  • Saini HS, Westgate ME (1999) Reproductive development in grain crops during drought. Adv Agron 68:59–96

    Article  Google Scholar 

  • Sasakuma T, Maan SS, Williams ND (1978) EMS-induced male-sterile mutants in euplasmic and alloplasmic common wheat. Crop Sci 18:850–853

    Article  Google Scholar 

  • Schnable PS, Springer NM (2013) Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol 64:71–88

    Article  CAS  Google Scholar 

  • Shull GH (1908) The composition of a field of maize. Am Breed Assoc Rep 4:296–301

    Google Scholar 

  • Spindel JE, Begum H, Akdemir D, Collard B, Redona E, Jannink JL, McCouch S (2016) Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement. Heredity 116:395–408

    Article  CAS  Google Scholar 

  • Sprague GF, Loyd AT (1942) General vs specific combining ability in single crosses of corn. Agron J 34:923–932

    Article  Google Scholar 

  • Sutka J (1981) Genetic-studies of frost-resistance in wheat. Theor Appl Genet 59:145–152

    Article  CAS  Google Scholar 

  • Sutka J (1994) Genetic-control of frost tolerance in wheat (Triticum aestivum L.). Euphytica 77:277–282

    Article  Google Scholar 

  • Tsunewaki K (1969) Basic studies on hybrid wheat breeding. IV. Natural cross-fertilization in male sterile wheat. Seiken Ziho 21:1–5

    Google Scholar 

  • Tsunewaki K, Mukai Y, Endo TR, Tsuji S, Murata M (1976) Genetic diversity of cytoplasm in Triticum and Aegilops. V. Classification of 23 cytoplasms into 8 plasma types. Idengaku zasshi 51:175–191

    Google Scholar 

  • Tsunewaki K, Wang GZ, Matsuoka Y (1996) Plasmon analysis of Triticum (wheat) and Aegilops. 1. Production of alloplasmic common wheats and their fertilities. Genes Genet Syst 71:293–311

    Article  CAS  Google Scholar 

  • Tsunewaki K, Wang GZ, Matsuoka Y (2002) Plasmon analysis of Triticum (wheat) and Aegilops. 2. Characterization and classification of 47 plasmons based on their effects on common wheat phenotype. Genes Genet Syst 77:409–427

    Article  CAS  Google Scholar 

  • Whitford R, Fleury D, Reif JC, Garcia M, Okada T, Korzun V, Langridge P (2013) Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. J Exp Bot 64:5411–5428

    Article  CAS  Google Scholar 

  • Wilson JA, Ross WM (1962) Male sterility interaction of Triticum aestivum nucleus and Triticum timopheevi cytoplasm. Wheat Inf Serv 14:415–421

    Google Scholar 

  • Worland AJ (1996) The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89:49–57

    Article  Google Scholar 

  • Wu YZ, Fox TW, Trimnell MR, Wang LJ, Xu RJ, Cigan AM, Huffman GA, Garnaat CW, Hershey H, Albertsen MC (2016) Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol J 14:1046–1054

    Article  CAS  Google Scholar 

  • Wurschum T, Langer SM, Longin CFH, Korzun V, Akhunov E, Ebmeyer E, Schachschneider R, Schacht J, Kazman E, Reif JC (2013) Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor Appl Genet 126:1477–1486

    Article  Google Scholar 

  • Zhao YS, Zeng J, Fernando R, Reif JC (2013) Genomic prediction of hybrid wheat performance. Crop Sci 53:802–810

    Article  Google Scholar 

  • Zhao Y, Mette MF, Gowda M, Longin CF, Reif JC (2014) Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat. Heredity 112:638–645

    Article  CAS  Google Scholar 

  • Zhou KJ, Wang SH, Feng YQ, Liu ZX, Wang GX (2006) The 4E-ms system of producing hybrid wheat. Crop Sci 46:250–255

    Article  Google Scholar 

  • Zhou KJ, Wang SH, Feng YQ, Ji WQ, Wang GX (2008) A new male sterile mutant LZ in wheat (Triticum aestivum L.). Euphytica 159:403–410

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Okada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okada, T., Whitford, R. (2019). Hybrid Wheat and Abiotic Stress. In: Rajpal, V., Sehgal, D., Kumar, A., Raina, S. (eds) Genomics Assisted Breeding of Crops for Abiotic Stress Tolerance, Vol. II. Sustainable Development and Biodiversity, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-99573-1_11

Download citation

Publish with us

Policies and ethics