Skip to main content

Myco-Nanoparticles: A Novel Approach for Inhibiting Amyloid-β Fibrillation

  • Chapter
  • First Online:
Exploring the Realms of Nature for Nanosynthesis

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 691 Accesses

Abstract

Protein aggregation has been shown to be a hallmark of several neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and prion diseases. These aggregates are generally amyloidogenic in nature with fibrillar structure and β-sheet conformation. In this chapter we have focused on a possibility of using myco-nanoparticles for limiting the protein aggregation in such cases. Myco-nanoparticles can be used as effective therapeutic agents due to their capability to cross the blood–brain barrier and diminish the production of amyloid plaques rich in fibrillar protein aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelere I, Lateef A (2016) A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes, and pigments. Nanotechnol Rev 5(6):567–587

    Article  CAS  Google Scholar 

  • Aguzzi A, O’Connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9(3):237–248. https://doi.org/10.1038/nrd3050

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28(4):313–318

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003b) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14(7):824

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1(1):47–53

    Article  CAS  Google Scholar 

  • Alsberg E, Feinstein E, Joy MP, Prentiss M, Ingber DE (2006) Magnetically-guided self-assembly of fibrin matrices with ordered nano-scale structure for tissue engineering. Tissue Eng 12(11):3247–3256. https://doi.org/10.1089/ten.2006.12.3247

    Article  CAS  PubMed  Google Scholar 

  • Alzheimer’s Association (2015) 2015 Alzheimer’s disease facts and figures. Alzheimers Dement 11(3):332

    Article  Google Scholar 

  • Araya E, Olmedo I, Bastus NG, Guerrero S, Puntes VF, Giralt E, Kogan MJ (2008) Gold nanoparticles and microwave irradiation inhibit beta-amyloid amyloidogenesis. Nanoscale Res Lett 3(11):435

    Article  CAS  PubMed Central  Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanoparticles Article ID 689419. https://doi.org/10.1155/2014/689419

    Article  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22(11):1399–1408. https://doi.org/10.1038/nbt1029

    Article  CAS  PubMed  Google Scholar 

  • Belanova AA, Gavalas N, Makarenko YM, Belousova MM, Soldatov AV, Zolotukhin PV (2018) Physicochemical properties of magnetic nanoparticles: implications for biomedical applications in vitro and in vivo. Oncol Res Treat 41(3):139–143. https://doi.org/10.1159/000485020

    Article  CAS  PubMed  Google Scholar 

  • Beveridge T, Murray R (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141(2):876–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhainsa KC, D’souza S (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47(2):160–164

    Article  CAS  PubMed  Google Scholar 

  • Brambilla D, Le Droumaguet B, Nicolas J, Hashemi SH, Wu L-P, Moghimi SM, Couvreur P, Andrieux K (2011) Nanotechnologies for Alzheimer’s disease: diagnosis, therapy, and safety issues. Nanomed Nanotechnol Biol Med 7(5):521–540

    Article  CAS  Google Scholar 

  • Cabuzu D, Cirja A, Puiu R, Mihai Grumezescu A (2015) Biomedical applications of gold nanoparticles. Curr Top Med Chem 15(16):1605–1613

    Article  CAS  PubMed  Google Scholar 

  • Chatani E, Yamamoto N (2018) Recent progress on understanding the mechanisms of amyloid nucleation. Biophys Rev 10(2):527–534. https://doi.org/10.1007/s12551-017-0353-8

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Dai Q, Morshed RA, Fan X, Wegscheid ML, Wainwright DA, Han Y, Zhang L, Auffinger B, Tobias AL (2014) Blood-brain barrier permeable gold nanoparticles: an efficient delivery platform for enhanced malignant glioma therapy and imaging. Small 10(24):5137–5150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366. https://doi.org/10.1146/annurev.biochem.75.101304.123901

    Article  CAS  PubMed  Google Scholar 

  • Cortie MB, McDonagh AM (2011) Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem Rev 111(6):3713–3735

    Article  CAS  PubMed  Google Scholar 

  • Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831. https://doi.org/10.3389/fmicb.2016.01831

    Article  PubMed  PubMed Central  Google Scholar 

  • Eichner T, Radford SE (2011) A diversity of assembly mechanisms of a generic amyloid fold. Mol Cell 43(1):8–18. https://doi.org/10.1016/j.molcel.2011.05.012

    Article  CAS  PubMed  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6(1):103–109

    Article  CAS  Google Scholar 

  • Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108(3):845–910

    Article  CAS  PubMed  Google Scholar 

  • Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3(1):R9–R23. https://doi.org/10.1016/S1359-0278(98)00002-9

    Article  CAS  PubMed  Google Scholar 

  • Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20(5):8856–8874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedrich RP, Tepper K, Ronicke R, Soom M, Westermann M, Reymann K, Kaether C, Fandrich M (2010) Mechanism of amyloid plaque formation suggests an intracellular basis of Abeta pathogenicity. Proc Natl Acad Sci U S A 107(5):1942–1947. https://doi.org/10.1073/pnas.0904532106

    Article  PubMed  PubMed Central  Google Scholar 

  • Gade A, Bonde P, Ingle A, Marcato P, Duran N, Rai M (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobaased Mater Bioenergy 2(3):243–247

    Article  Google Scholar 

  • Gericke M, Pinches A (2006) Microbial production of gold nanoparticles. Gold Bull 39(1):22–28

    Article  CAS  Google Scholar 

  • Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60(11):1307–1315

    Article  CAS  PubMed  Google Scholar 

  • Griffith JS (1967) Self-replication and scrapie. Nature 215(5105):1043–1044

    Article  CAS  PubMed  Google Scholar 

  • Gsponer J, Vendruscolo M (2006) Theoretical approaches to protein aggregation. Protein Pept Lett 13(3):287–293

    Article  CAS  PubMed  Google Scholar 

  • Hamedi S, Ghaseminezhad M, Shokrollahzadeh S, Shojaosadati SA (2017) Controlled biosynthesis of silver nanoparticles using nitrate reductase enzyme induction of filamentous fungus and their antibacterial evaluation. Artif Cells Nanomed Biotechnol 45(8):1588–1596

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa T, Sato Y, Okada T, Shibukawa M, Li C, Orbulescu J, Leblanc RM (2007) Inhibition of aggregation of a biomimic peptidolipid Langmuir monolayer by Congo red studied by UV-vis and infrared spectroscopies. J Phys Chem B 111(51):14227–14232. https://doi.org/10.1021/jp0759269

    Article  CAS  PubMed  Google Scholar 

  • Hemath Naveen K, Kumar G, Karthik L, Bhaskara Rao K (2010) Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch Appl Sci Res 2(6):161–167

    Google Scholar 

  • Idicula-Thomas S, Balaji PV (2007) Protein aggregation: a perspective from amyloid and inclusion-body formation. Curr Sci 92(6):758–767

    CAS  Google Scholar 

  • Invernizzi G, Papaleo E, Sabate R, Ventura S (2012) Protein aggregation: mechanisms and functional consequences. Int J Biochem Cell Biol 44(9):1541–1554. https://doi.org/10.1016/j.biocel.2012.05.023

    Article  CAS  PubMed  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385–406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jarrett JT, Lansbury PT Jr (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73(6):1055–1058

    Article  CAS  PubMed  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist C-G (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 96(24):13611–13614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaus-Joerger T, Joerger R, Olsson E, Granqvist C-G (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19(1):15–20

    Article  CAS  PubMed  Google Scholar 

  • Kogan MJ, Bastus NG, Amigo R, Grillo-Bosch D, Araya E, Turiel A, Labarta A, Giralt E, Puntes VF (2006) Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Lett 6(1):110–115

    Article  CAS  PubMed  Google Scholar 

  • Kowalczyk B, Lagzi I, Grzybowski BA (2010) “Nanoarmoured” droplets of different shapes formed by interfacial self-assembly and crosslinking of metal nanoparticles. Nanoscale 2(11):2366–2369. https://doi.org/10.1039/c0nr00381f

    Article  CAS  PubMed  Google Scholar 

  • Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT (2002) Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418(6895):291–291

    Article  CAS  PubMed  Google Scholar 

  • Li X, Xu H, Chen Z-S, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater 2011:270974

    Google Scholar 

  • Liao YH, Chang YJ, Yoshiike Y, Chang YC, Chen YR (2012) Negatively charged gold nanoparticles inhibit Alzheimer’s amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small 8(23):3631–3639

    Article  CAS  PubMed  Google Scholar 

  • Luechinger NA, Grass RN, Athanassiou EK, Stark WJ (2009) Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals. Chem Mater 22(1):155–160

    Article  Google Scholar 

  • Macchi F, Eisenkolb M, Kiefer H, Otzen DE (2012) The effect of osmolytes on protein fibrillation. Int J Mol Sci 13(3):3801–3819. https://doi.org/10.3390/ijms13033801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madhiyazhagan P, Murugan K, Kumar AN, Nataraj T, Dinesh D, Panneerselvam C, Subramaniam J, Kumar PM, Suresh U, Roni M (2015) Sargassum muticum-synthesized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitol Res 114(11):4305–4317

    Article  PubMed  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517

    Article  CAS  Google Scholar 

  • Mohanta YK, Panda SK, Jayabalan R, Sharma N, Bastia AK, Mohanta TK (2017) Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Front Mol Biosci 4:14. https://doi.org/10.3389/fmolb.2017.00014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris AM, Watzky MA, Finke RG (2009) Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature. Biochim Biophys Acta 1794(3):375–397. https://doi.org/10.1016/j.bbapap.2008.10.016

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar P, Alam M (2001) Bioreduction of AuCl4− ions by the fungus, Verticillium sp and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40(19):3585–3588

    Article  CAS  Google Scholar 

  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 3(5):461–463

    Article  CAS  PubMed  Google Scholar 

  • Nedumpully-Govindan P, Kakinen A, Pilkington EH, Davis TP, Chun Ke P, Ding F (2016) Stabilizing off-pathway oligomers by polyphenol nanoassemblies for IAPP aggregation inhibition. Sci Rep 6:19463. https://doi.org/10.1038/srep19463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288

    Article  CAS  PubMed  Google Scholar 

  • Obulesu M, Jhansilakshmi M (2016) Neuroprotective role of nanoparticles against Alzheimer’s disease. Curr Drug Metab 17(2):142–149

    Article  CAS  PubMed  Google Scholar 

  • Oezaslan M, Heggen M, Strasser P (2011) In situ observation of bimetallic alloy nanoparticle formation and growth using high-temperature XRD. Chem Mater 23(8):2159–2165

    Article  CAS  Google Scholar 

  • Otari SV, Patil RM, Ghosh SJ, Thorat ND, Pawar SH (2015) Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc 136(pt B):1175–1180. https://doi.org/10.1016/j.saa.2014.10.003

    Article  CAS  PubMed  Google Scholar 

  • Patel MM, Patel BM (2017) Crossing the blood-brain barrier: recent advances in drug delivery to the brain. CNS Drugs 31(2):109–133. https://doi.org/10.1007/s40263-016-0405-9

    Article  CAS  PubMed  Google Scholar 

  • Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta A Mol Biomol Spectrosc 73(2):374–381

    Article  PubMed  Google Scholar 

  • Philo JS, Arakawa T (2009) Mechanisms of protein aggregation. Curr Pharm Biotechnol 10(4):348–351

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Pugazhenthiran N, Anandan S, Kathiravan G, Prakash NKU, Crawford S, Ashokkumar M (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanopart Res 11(7):1811

    Article  CAS  Google Scholar 

  • Rambaran RN, Serpell LC (2008) Amyloid fibrils: abnormal protein assembly. Prion 2(3):112–117

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(suppl):S10–S17. https://doi.org/10.1038/nm1066

    Article  CAS  PubMed  Google Scholar 

  • Saraiva C, Praca C, Ferreira R, Santos T, Ferreira L, Bernardino L (2016) Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release 235:34–47. https://doi.org/10.1016/j.jconrel.2016.05.044

    Article  CAS  PubMed  Google Scholar 

  • Sawle BD, Salimath B, Deshpande R, Bedre MD, Prabhakar BK, Venkataraman A (2008) Biosynthesis and stabilization of Au and Au–Ag alloy nanoparticles by fungus, Fusarium semitectum. Sci Technol Adv Mater 9(3):035012

    Article  Google Scholar 

  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small 1(5):517–520

    Article  CAS  PubMed  Google Scholar 

  • Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, Arnsdorf MF, Lindquist SL (2000) Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289(5483):1317–1321

    Article  CAS  PubMed  Google Scholar 

  • Shakibaie M, Forootanfar H, Mollazadeh-Moghaddam K, Bagherzadeh Z, Nafissi-Varcheh N, Shahverdi AR, Faramarzi MA (2010) Green synthesis of gold nanoparticles by the marine microalga Tetraselmis suecica. Biotechnol Appl Biochem 57(2):71–75

    Article  CAS  PubMed  Google Scholar 

  • Sharma AK, Pavlova ST, Kim J, Finkelstein D, Hawco NJ, Rath NP, Kim J, Mirica LM (2012) Bifunctional compounds for controlling metal-mediated aggregation of the abeta42 peptide. J Am Chem Soc 134(15):6625–6636. https://doi.org/10.1021/ja210588m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonvico F, Dubernet C, Colombo P, Couvreur P (2005) Metallic colloid nanotechnology, applications in diagnosis and therapeutics. Curr Pharm Des 11(16):2091–2105

    Article  CAS  Google Scholar 

  • Southam G, Beveridge TJ (1996) The occurrence of sulfur and phosphorus within bacterially derived crystalline and pseudocrystalline octahedral gold formed in vitro. Geochim Cosmochim Acta 60(22):4369–4376

    Article  CAS  Google Scholar 

  • Stephen JR, Macnaughtont SJ (1999) Developments in terrestrial bacterial remediation of metals. Curr Opin Biotechnol 10(3):230–233

    Article  CAS  PubMed  Google Scholar 

  • Suganya KU, Govindaraju K, Kumar VG, Dhas TS, Karthick V, Singaravelu G, Elanchezhiyan M (2015) Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms. Mater Sci Eng C 47:351–356

    Article  Google Scholar 

  • Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim acta A Mol Biomol Spectrosc 114:144–147. https://doi.org/10.1016/j.saa.2013.05.030

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Yokota T, Kawano H, Gondo T, Ishihara T, Uchino F (1989) Ultrastructural evidence for intracellular formation of amyloid fibrils in macrophages. Virchows Arch A Pathol Anat Histopathol 415(5):411–419

    Article  CAS  PubMed  Google Scholar 

  • Talham DR (2002) Biomineralization: principles and concepts in bioinorganic materials chemistry Stephen Mann. Oxford University Press, New York (2001 ACS Publications)

    Google Scholar 

  • Tomiyama T, Asano S, Suwa Y, Morita T, Kataoka K, Mori H, Endo N (1994) Rifampicin prevents the aggregation and neurotoxicity of amyloid beta protein in vitro. Biochem Biophys Res Commun 204(1):76–83. https://doi.org/10.1006/bbrc.1994.2428

    Article  CAS  PubMed  Google Scholar 

  • Tripathi RM, Gupta RK, Bhadwal AS, Singh P, Shrivastav A, Shrivastav B (2015) Fungal biomolecules assisted biosynthesis of Au–Ag alloy nanoparticles and evaluation of their catalytic property. IET Nanobiotechnol 9(4):178–183

    Article  PubMed  Google Scholar 

  • Tycko R (2011) Solid-state NMR studies of amyloid fibril structure. Annu Rev Phys Chem 62:279–299. https://doi.org/10.1146/annurev-physchem-032210-103539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uversky VN (2007) Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J Neurochem 103(1):17–37. https://doi.org/10.1111/j.1471-4159.2007.04764.x

    Article  CAS  PubMed  Google Scholar 

  • Villaverde A, Carrio MM (2003) Protein aggregation in recombinant bacteria: biological role of inclusion bodies. Biotechnol Lett 25(17):1385–1395

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Yu X, Patal K, Hu R, Chuang S, Zhang G, Zheng J (2013) Tanshinones inhibit amyloid aggregation by amyloid-beta peptide, disaggregate amyloid fibrils, and protect cultured cells. ACS Chem Nerosci 4(6):1004–1015. https://doi.org/10.1021/cn400051e

    Article  CAS  Google Scholar 

  • Wilkinson J (2003) Nanotechnology applications in medicine. Med Device Technol 14(5):29–31

    CAS  PubMed  Google Scholar 

  • Xiong N, Dong X-Y, Zheng J, Liu F-F, Sun Y (2015) Design of LVFFARK and LVFFARK-functionalized nanoparticles for inhibiting amyloid β-protein fibrillation and cytotoxicity. ACS Appl Mater Interfaces 7(10):5650–5662

    Article  CAS  PubMed  Google Scholar 

  • Yallappa S, Manjanna J, Dhananjaya B (2015) Phytosynthesis of stable Au, Ag and Au–Ag alloy nanoparticles using J. sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim Acta A Mol Biomol Spectrosc 137:236–243

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yan S, Tyagi R, Surampalli R (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82(4):489–494

    Article  CAS  PubMed  Google Scholar 

  • Zheng D, Hu C, Gan T, Dang X, Hu S (2010) Preparation and application of a novel vanillin sensor based on biosynthesis of Au–Ag alloy nanoparticles. Sens Actuators B 148(1):247–252

    Article  CAS  Google Scholar 

  • Zhou BR, Liang Y, Du F, Zhou Z, Chen J (2007) Mixed macromolecular crowding accelerates the oxidative refolding of reduced, denatured lysozyme. Implications for protein folding in intracellular environments (vol 279, pg 55109, 2004). J Biol Chem 282(37):27556–27556

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saran, A., Boddula, R., Dubey, P., Pothu, R., Gautam, S. (2018). Myco-Nanoparticles: A Novel Approach for Inhibiting Amyloid-β Fibrillation. In: Prasad, R., Jha, A., Prasad, K. (eds) Exploring the Realms of Nature for Nanosynthesis. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-99570-0_3

Download citation

Publish with us

Policies and ethics