Skip to main content

Microbes: Nature’s Cell Factories of Nanoparticles Synthesis

  • Chapter
  • First Online:
Book cover Exploring the Realms of Nature for Nanosynthesis

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Microbes are omnipresent in environment, inhabited to specific niches and play a variety of essential roles in the natural recycling of inorganic minerals. Scientists have been trying to exploit these interactions between inorganic environment and microbes. Recently, microbes are found to synthesize inorganic nanoparticles via enzymes mediated cell activities by getting metal ions from their environment. This provided a novel breakthrough in the field of nanotechnology and directed to a new era of nano-biotechnology, where scientists are taking into account biological approaches of nanoparticles synthesis to overcome the use of expensive and toxic chemicals. Traditionally, these nanoparticles are synthesized by physical and chemical methods which pose potential hazards to health and environment. Yet it is still a challenge to synthesize nanoparticles from wide range of chemical composition and high mono-dispersity. In number of biochemical and biophysical processes, nano-biotechnology incorporates the use of actinomycetes, algae, bacteria, fungi, yeasts, and plants to produce low-cost, energy efficient and ecofriendly products. Among microorganisms, bacterial species gain more importance in synthesis of nanoparticles due to ease in their cultivation and downstream processing. This chapter provides a comprehensive overview of microbial synthesis of different nanoparticles and their biosynthesis mechanisms. Applications in the field of environment, biotechnology, biomedicine, and agriculture are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elsalam K, Prasad R (2018) Nanobiotechnology applications in plant protection. Springer, Berlin https://www.springer.com/us/book/9783319911601

    Book  Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003a) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28:313–318

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Sirinivas V, Sastry M (2003b) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828

    Article  CAS  Google Scholar 

  • Ahmad MS, Yasser MM, Sholkamy EN, Ali AM, Mehanni MM (2015) Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain. Int J Nanomed 10:3389. https://doi.org/10.2147/IJN.S82707

    Article  CAS  Google Scholar 

  • Al-Harbi MS, El-Deeb BA, Mostafa N, Amer SAM (2014) Extracellular biosynthesis of AgNPs by the bacterium Proteus mirabilis and its toxic effect on some aspects of animal physiology. Adv Nanoparticles 3:83–91

    Article  CAS  Google Scholar 

  • Arčon I, Piccolo O, Pagnelli S, Baldi F (2012) XAS analysis of a nanostructured iron polysaccharide produced anaerobically by a strain of Klebsiella oxytoca. Biometals. https://doi.org/10.1007/s10534-012-9554-6

    Article  PubMed  CAS  Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanoparticles Article ID 689419. https://doi.org/10.1155/2014/689419

    Article  CAS  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Bahrami K, Nazari P, Sepehrizadeh Z, Zarea B, Shahverdi AR (2012) Microbial synthesis of antimony sulfide nanoparticles and their characterization. Ann Microbiol 62:1419–1425

    Article  CAS  Google Scholar 

  • Bai H, Zhang Z, Gong J (2006) Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol Lett 28(14):1135–1139

    Article  CAS  PubMed  Google Scholar 

  • Bai H, Zhang Z, Guo Y, Jia W (2009) Biological synthesis of size-controlled cadmium sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Nanoscale Res Lett 4:717–723. https://doi.org/10.1007/s11671-009-9303-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker RA, Tatum JH (1998) Novel anthraquinones from stationary cultures of Fusarium oxysporum. J Ferment Bioeng 85:359–361

    Article  CAS  Google Scholar 

  • Bar H, Bhui DK, Sahoo GP, Sarkar P, De Sankar P et al (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A Physicochem Eng Aspects 339:134–139

    Article  CAS  Google Scholar 

  • Behera SS, Jha S, Arakha M, Panigrahi TK (2013) Synthesis of silver nanoparticles from microbial source-a green synthesis approach, and evaluation of its antimicrobial activity against Escherichia coli. Int J Eng Res Appl 3(2):58–62

    Google Scholar 

  • Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60(11):1289–1306

    Article  CAS  PubMed  Google Scholar 

  • Binupriya AR, Sathishkumar M, Yun SI (2010) Biocrystallization of silver and gold ions by inactive cell filtrate of Rhizopus stolonifer. Colloids Surf B Biointerfaces 79:531–534

    Article  CAS  PubMed  Google Scholar 

  • Blattner FR (1996) E. coli genome project. http://www.genome.wisc.edu/

  • Busi S, Rajkumari J, Pattnaik S, Parasuraman P, Hnamte S (2016) Extracellular synthesis of zinc oxide nanoparticles using Acinetobacter schindleri SIZ7 and its antimicrobial property against foodborne pathogens. J Microbiol Biotechnol Food Sci 5(5):407–411

    Article  CAS  Google Scholar 

  • Campoccia D, Montanaro L, Arciola CR (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34(34):8533–8554. https://doi.org/10.1016/j.biomaterials.2013.07.089

    Article  CAS  PubMed  Google Scholar 

  • Castro-Longoria E, Moreno-Velázquez SD, Vilchis-Nestor AR, Arenas Berumen E, Avalos-Borja M (2012) Production of platinum nanoparticles and nano-aggregates using Neurospora crassa. J Microbiol Biotechnol 22:1000–1004

    Article  CAS  PubMed  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583

    Article  CAS  PubMed  Google Scholar 

  • Christensen L, Vivekanandhan S, Misra M, Mohanty A (2011) Biosynthesis of silver nanoparticles using murraya koenigii (curry leaf): An investigation on the effect of broth concentration in reduction mechanism and particle size. Adv Mater Lett 2:429–434

    Article  CAS  Google Scholar 

  • Cunningham DP, Lundie LL (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59:7–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597

    Article  CAS  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199

    Article  CAS  PubMed  Google Scholar 

  • Das VL, Thomas R, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK (2014) Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotechnology 4:121–126. https://doi.org/10.1007/s13205-013-0130-8

    Article  Google Scholar 

  • Dhillon GS, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32:49–73

    Article  CAS  PubMed  Google Scholar 

  • Durán N, Marcato PD, Alves OL, de Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3. https://doi.org/10.1186/1477-3155-3-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Durán N, Marcato PD, De Souza GIH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3(2):203–208

    Article  CAS  Google Scholar 

  • Elblbesy MAA, Madbouly AK, Hamdan TAA (2014) Bio-synthesis of magnetite nanoparticles by bacteria. Am J Nano Res Appl 2(5):98–103. https://doi.org/10.11648/j.nano.20140205.12

    Article  Google Scholar 

  • Evanoff DD Jr, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. Chem Phys Chem 6:1221–1231

    Article  CAS  PubMed  Google Scholar 

  • Faraz M, Abbasia A, Naqvia FK, Khare N, Prasad R, Barman I, Pandey R (2018) Polyindole/CdS nanocomposite based turn-on, multi-ion fluorescence sensor for detection of Cr3+, Fe3+ and Sn2+ ions. Sens Actuators B 269:195–202 https://doi.org/10.1016/j.snb.2018.04.110

    Article  CAS  Google Scholar 

  • Fariq A, Khan T, Yasmin A (2017) Microbial synthesis of nanoparticles and their potential applications in biomedicine. J Appl Biomed 15(2017):241–248

    Article  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6(1):e103–e109

    Article  CAS  Google Scholar 

  • Felfoul O, Mohammadi M, Martel S (2007) Magnetic resonance imaging of Fe3O4 nanoparticles embedded in living magnetotactic bacteria for potential use as carriers for in vivo applications. In: Proceedings of the 29th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBS ‘07), pp 1463–1466

    Google Scholar 

  • Garcíaa MF, Rodriguezb A (2007) Handbook of Research on Nanoscience, Nanotechnology, and Advanced Materials. Brookhaven national laboratory -79479-2007-BC

    Google Scholar 

  • Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int 49:3280–3294

    Article  CAS  Google Scholar 

  • Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M (2014) Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Appl Microbiol Biotechnol 98(19):8083–8097

    Article  CAS  PubMed  Google Scholar 

  • Goodman SB, Yao Z, Keeney M, Yang F (2013) The future of biologic coatings for orthopaedic implants. Biomaterials 34(13):3174–3183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopinath V, Velusamy P (2013) Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim Acta A Mol Biomol Spectrosc 106:170–174

    Article  CAS  PubMed  Google Scholar 

  • Govender Y, Riddin T, Gericke M, Whiteley CG (2009) Bioreduction of platinum salts into nanoparticles: a mechanistic perspective. Biotechnol Lett 31:95–100

    Article  CAS  PubMed  Google Scholar 

  • Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim JH (2013) Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BioMed Res Int. https://doi.org/10.1155/2013/535796

    Article  CAS  Google Scholar 

  • Häfeli UO, Riffle JS, Harris-Shekhawat L, Carmichael-Baranauskas A, Mark F, Dailey JP, Bardenstein D (2009) Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol Pharm 6:1417–1428

    Article  PubMed  CAS  Google Scholar 

  • Hasan S, Singh S, Parikh RY, Dharne MS, Patole MS, Prasad BL, Shouche YL (2008) Bacterial synthesis of copper/copper oxide nanoparticles. J Nanosci Nanotechnol 8(6):3191–3196

    Article  CAS  PubMed  Google Scholar 

  • Hasany SF, Ahmad I, Ranjan J, Rehman A (2012) Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci Nanotechnol 2(6):148–158

    Article  CAS  Google Scholar 

  • He S, Guo Z, Zhang Y, Zhang S, Wang J et al (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987

    Article  CAS  Google Scholar 

  • Hosea M, Greene B, Mcpherson R, Henzl M, Dennis MDA, Darnall W (1986) Accumulation of elemental gold on the alga Chlorella vulgaris. Inorg Chim Acta 123(3:161–165

    Article  Google Scholar 

  • Hosseini MR, Sarvi MN (2015) Recent achievements in the microbial synthesis of semiconductor metal sulfide nanoparticles. Mater Sci Semicond Process 40:293–301

    Article  CAS  Google Scholar 

  • Hu B, Wang SB, Wang K, Zhang M, Yu SH (2008) Microwave assisted rapid facile ‘green’ synthesis of uniform silver nanoparticles: self-assembly into multilayered films and their optical properties. J Phys Chem 112:11169–11174

    CAS  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y et al (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:11–15

    Google Scholar 

  • Jaidev LR, Narasimha G (2010) Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf B Biointerfaces 81(2):430–433

    Article  CAS  PubMed  Google Scholar 

  • Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KVB (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A 90:78–84

    Article  CAS  Google Scholar 

  • Johnson A, Merilis G, Hasting J, Palmer EM, Fitts JP, Chidambaram D (2013) Reductive degradation of organic compounds using microbial nanotechnology. J Electrochem Soc 160:G27–G31

    Article  CAS  Google Scholar 

  • Johnston CW, Wyatt MA, Li X, Ibrahim A, Shuster J et al (2013) Gold biomineralization by a metallophore from a gold-associated microbe. Nat Chem Biol 9:241–243

    Article  CAS  PubMed  Google Scholar 

  • Kasthuri J, Kathiravan K, Rajendiran N (2008) Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. J Nanopart Res 11:1075–1085

    Article  CAS  Google Scholar 

  • Kato H (2011) In vitro assays: tracking nanoparticles inside cells. Nat Nanotechnol 6(3):139–140

    Article  CAS  PubMed  Google Scholar 

  • Kaul RK, Kumar P, Burman U, Joshi P, Agrawal A, Raliya R, Tarafdar JC (2012) Magnesium and iron nanoparticles production using microorganisms and various salts. Mater Sci 30(3):254–258

    CAS  Google Scholar 

  • Kim Y, Roh Y (2014) Effects of microbial growth conditions on synthesis of magnetite nanoparticles by indigenous Fe (III)-reducing bacteria. In: The 2014 World congress on advances in civil, environmental and materials research, Busan, Korea

    Google Scholar 

  • Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, Elango G, Zahir AA, Kamaraj C, Bagavan A (2011) Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis. Mater Lett 65:2745–2747

    Article  CAS  Google Scholar 

  • Konrad A, Herr U, Tidecks R, Samwer F (2001) Luminescence of bulk and nanocrystalline cubic yttria. J Appl Phys 90(7):516–3523

    Article  CAS  Google Scholar 

  • Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78:583–588

    Article  CAS  PubMed  Google Scholar 

  • Kowshik M, Ashtaputre S, Kulkani SK, Parknikar KMM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100

    Article  CAS  Google Scholar 

  • Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT et al (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B Biointerfaces 76:50–56

    Article  CAS  PubMed  Google Scholar 

  • Krumov N, Oder S, Perner-Nochta I, Angelov A, Posten C (2007) Accumulation of CdS nanoparticles by yeasts in a fed-batch bioprocess. J Biotechnol 132:481–486

    Article  CAS  PubMed  Google Scholar 

  • Kulandaivelu, B., & Gothandam, K. M. (2016). Cytotoxic effect on cancerous cell lines by biologically synthesized silver nanoparticles. Brazilian Archives of Biology and Technology, 59.

    Google Scholar 

  • Kumar SA, Ayoobul AA, Absar A, Khan MI (2007) Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J Biomed Nanotechnol 3:190–194

    Article  CAS  Google Scholar 

  • Kumar SK, Peter YA, Nadeau JL (2008) Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnology 19:495101

    Article  PubMed  CAS  Google Scholar 

  • Kumar D, Karthik L, Kumar G, Roa KB (2011) Biosynthesis of silver nanoparticles from marine yeast and their antimicrobial activity against multidrug resistant pathogens. Pharmacol Online 3:1100–1111

    Google Scholar 

  • Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, Stasio GD, Bond PL, Lai B, Kelly SD, Banfield JF (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747

    Article  CAS  PubMed  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2007) Biosynthesis of silver nanoparticles by filamentous Cyanobacteria from a silver(I) nitrate complex. Langmuir 23(5):2694–2699. https://doi.org/10.1021/la0613124

    Article  CAS  PubMed  Google Scholar 

  • Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their application. J Nanometer 8. https://doi.org/10.1155/2011/270974

    Google Scholar 

  • Li J, Li Q, Ma X, Tian B, Li T, Yu J, Dai D, Weng Y, Hua Y (2016) Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties. Int J Nanomedicine 11:5931–5944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim HA, Mishra A, Yun SI (2011) Effect of pH on the extracellular synthesis of gold and silver nanoparticles by Saccharomyces cerevisae. J Nanosci Nanotechnol 11:518–522

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Qiao SZ, Hu QH, Lu GQ (2011) Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 7(4):425–443

    Article  CAS  PubMed  Google Scholar 

  • Lu CH, Jagannathan J (2002) Cerium-ion-doped yttrium aluminum garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting. Appl Phys Lett 80(19):3608–3610

    Article  CAS  Google Scholar 

  • Luechinger NA, Grass RN, Athanassiou EK, Stark WJ (2010) Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals. Chem Mater 22(1):155–160

    Article  CAS  Google Scholar 

  • Lyubchenko YL, Shlyakhtenko LS (1997) Visualization of supercoiled DNA with atomic force microscopy in situ. Proc Natl Acad Sci U S A 94:496–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majumder BR (2012) Bioremediation: copper nanoparticles from electronic-waste. Int J Eng Sci Technol 4:4380

    Google Scholar 

  • Mala R, Arunachalam P, Sivsankari M (2012) Synergistic bactericidal activity of silver nanoparticles and ciprofloxacin against phytopathogens. J Cell Tissue Res 12:3249–3254

    CAS  Google Scholar 

  • Malarkodi C, Rajeshkumar S, Paulkumar K, Gnanajobitha G, Vanaja M, Annadurai G (2013) Bacterial synthesis of silver nanoparticles by using optimized biomass growth of Bacillus sp. Nanosci Nanotechnol Int J 3(2):26–32

    Google Scholar 

  • Malarkodi C, Rajeshkumar S, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G (2014) Biosynthesis and antimicrobial activity of semiconductor nanoparticles against oral pathogens. Bioinorg Chem Appl 2014. https://doi.org/10.1155/2014/347167

    Article  CAS  Google Scholar 

  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G et al (2006) Safe handling of nanotechnology. Nature 444:267–269

    Article  CAS  PubMed  Google Scholar 

  • Merga G, Wilson R, Geoffrey L, Milosavljevic BH, Meisel D (2007) Redox catalysis on “naked” silver nanoparticles. J Phys Chem 111:12220–12226

    CAS  Google Scholar 

  • Mishra A, Tripathy S, Yun SI (2011) Bio-synthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic bacteria. J Nanosci Nanotechnol 1:243–248

    Article  CAS  Google Scholar 

  • Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh HB (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9(5):e97881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mishra S, Singh BR, Naqvi AH, Singh HB (2017) Potential of biosynthesized silver nanoparticles using Stenotrophomonas sp. BHU-S7 (MTCC 5978) for management of soil-borne and foliar phytopathogens. Sci. Rep. 27(7):45154. https://doi.org/10.1038/srep45154

    Article  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517

    Article  CAS  Google Scholar 

  • Mokhtari, N., Daneshpajouh, S., Seyedbagheri, S., Atashdehghan, R., Abdi, K., Sarkar, S., ... & Shahverdi, A. R. (2009). Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: The effects of visible-light irradiation and the liquid mixing process. Materials research bulletin, 44(6), 1415–1421.

    Article  CAS  Google Scholar 

  • Mondal AK, Mondal S, Samanta S, Mallick S (2011) Synthesis of ecofriendly silver nanoparticles from plant latex used as an important taxonomic tool for phylogenetic interrelationship. Adv Bioresour 2(1):122–133

    CAS  Google Scholar 

  • Moon JW, Rawn CJ, Rondinone AJ, Love LJ, Roh Y, Everett SM, Lauf RJ, Phelps TJ (2010) Large-scale production of magnetic nanoparticles using bacterial fermentation. J Ind Microbiol Biotechnol 37:1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Morita M, Rau D, Kajiyama S, Sakurai T, Baba M, Iwamura M (2004) Luminescence properties of nano-phosphors: metal-ion doped sol-gel silica glasses. Mater Sci-Pol 22(1):5–15

    CAS  Google Scholar 

  • Mousavi RA, Sepahy AA, Fazeli MR (2012) Biosynthesis, purification and characterization of Cadmium sulfide nanoparticles using Enterobacteriaceae and their application. Proc Int Conf Nanomater Appl Prop 1(1):5

    Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R et al (2001a) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the Mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001b) Bioreduction of AuCl(4)(-) ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed Engl 40(19):3585–3588

    Article  CAS  PubMed  Google Scholar 

  • Musarrat J, Dwivedi S, Singh BR, Al-Khedhairy AA, Azam A, Naqvi A (2010) Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour Technol 101:8772–8776

    Article  CAS  PubMed  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1–13. https://doi.org/10.1016/j.cis.2010.02.001

    Article  CAS  PubMed  Google Scholar 

  • Nikalje AP (2015) Nanotechnology and its applications in medicine. Med Chem 5:2

    Article  CAS  Google Scholar 

  • Parial D, Patra HK, Dasgupta AK, Pal R (2012) Screening of different algae for green synthesis of Gold nanoparticles. Eur J Phycol 47(1):22–29

    Article  CAS  Google Scholar 

  • Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110:1815–1822

    Article  PubMed  Google Scholar 

  • Perez-Gonzales T, Jimenez-Lopez C, Neal AL, Rull-Perez F, Rodriguez-Navarro A, Fernandez-Vivas A, Ianez-Pareja E (2010) Magnetite biomineralization induced by Shewanella oneidensis. Geochem Cormochem Acta 74:967–979

    Article  CAS  Google Scholar 

  • Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK (2009) Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf B Biointerfaces 74:309–316

    Article  CAS  PubMed  Google Scholar 

  • Prakash A, Sharma S, Ahmad N, Ghosh A, Sinha P (2010) Bacteria mediated extracellular synthesis of metallic nanoparticles. Int Res J Biotechnol 6:71–79

    Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles Article ID 963961. https://doi.org/10.1155/2014/963961

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad KS, Vaghasiya JV, Soni SS, Patel J, Patel R, Kumari M, Jasmani F, Selvaraj K (2015) Microbial Selenium nanoparticles (SeNPs) and their application as a sensitive hydrogen peroxide biosensor. Appl Biochem Biotechnol 177(6):1386–1393. https://doi.org/10.1007/s12010-015-1814-9

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  PubMed  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad R, Pandey R, Varma A, Barman I (2017b) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CAB International, Wallingford, pp 53–70

    Google Scholar 

  • Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011) Silver nanoparticles: Novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Nano Biomed Eng 3(3):174–178. https://doi.org/10.5101/nbe.v3i3.p174-178

    Article  CAS  Google Scholar 

  • Rajeshkumar S, Malarkodi C, Sivakumar V, Paulkumar P, Vanaja M (2014a) Biosynthesis of silver nanoparticles by using marine bacteria Vibrio alginolyticus. Int Res J Pharm Biosci 1(1):19–23

    Google Scholar 

  • Rajeshkumar S, Ponnanikajamideen M, Malarkodi C, Malini M, Annadurai G (2014b) Microbe-mediated synthesis of antimicrobial semiconductor nanoparticles by marine bacteria. J Nanostruct Chem 4:96. https://doi.org/10.1007/s40097-014-0096

    Article  Google Scholar 

  • Rajput N (2015) Methods of preparation of nanoparticles-a review. Int J Adv Eng Technol 7(4):1806–1811

    Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57

    Article  CAS  Google Scholar 

  • Ramanathan R, Bhargava SK, Bansal V (2011a) Biological synthesis of copper/copper oxide nanoparticles. In Rose Amal (ed.) CHEMECA 2011 - "Engineering A Better World", Sydney, Australia, 18-21 September, pp. 1-8. Chem Conf 466 

    Google Scholar 

  • Ramanathan R, O’Mullane AP, Parikh RY, Smooker PM, Bhargava SK, Bansal V (2011b) Bacterial kinetics-controlled shape-directed biosynthesis of silver nanoplates using Morganella psychrotolerans. Langmuir 27(2):714–719

    Article  CAS  PubMed  Google Scholar 

  • Rao NN, Kornberg A (1996) Inorganic polyphosphate supports resistance and survival of stationary-phase Escherichia coli. J Bacteriol 178:1394–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reith F, Etschmann B, Grosse C, Moors H, Benotmane MA, Monsieurs P et al (2009) Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc Natl Acad Sci 106:17757–17762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489

    Article  CAS  PubMed  Google Scholar 

  • Romanò CL, Toscano M, Romanò D, Drago L (2013) Antibiofilm agents and implant-related infections in orthopaedics: where are we? J Chemother 25(2):67–80. https://doi.org/10.1179/1973947812Y.0000000045

    Article  CAS  PubMed  Google Scholar 

  • Rozamond Y, Sweeney C, Mao X, Gao JLB, Angela MB, Georgiou G, Brent LI (2004) Bacterial biosynthesis of cadmium sulfide, nanocrystals. Chem Biol 11:1553–1559

    Article  CAS  Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3):707–716. https://doi.org/10.1016/j.actbio.2007.11.006

    Article  CAS  PubMed  Google Scholar 

  • Saifuddin N, Wong CW, Nur Yasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. Eur J Chem 6(1):61–70

    CAS  Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017a) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer, Singapore, pp 73–97

    Chapter  Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Karekalammanavar G, Mundaragi AC, David M, Shinge MR, Thimmappa SC, Prasad R, Harish ER (2017b) Agricultural nanotechnology: concepts, benefits, and risks. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer, Singapore, pp 1–17

    Google Scholar 

  • Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Manowade KR, Mujeeb MA, Mundaragi AC, Jogaiah S, David M, Thimmappa SC, Prasad R, Harish ER (2017c) Production of bionanomaterials from agricultural wastes. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer, Singapore, pp 33–58

    Chapter  Google Scholar 

  • Sastry M, Ahmad A et al (2005) Microbial nanoparticle production. In: Niemeyer PDCM, Mirkin PDCA (eds) Nanobiotechnology. Wiley, Chichester, pp 126–135

    Chapter  Google Scholar 

  • Sathyavanthi S, Manjula A, Rajendhran J, Gunasekaran P (2013) Biosynthesis and characterization of mercury sulphide nanoparticles produced by Bacillus cereus MRS-1. Indian J Exp Biol 51:973–978

    Google Scholar 

  • Schlüter M, Hentzel T, Suarez C, Koch M, Lorenz WG et al (2014) Synthesis of novel palladium(0) nanocatalysts by microorganisms from heavy-metalinfluenced high-alpine sites for dehalogenation of polychlorinated dioxins. Chemosphere 117C:462–470

    Article  CAS  Google Scholar 

  • Selvarajan E, Mohanasrinivasan V (2013) Biosynthesis and characterization of ZnO nanoparticles using Lactobacillus plantarum VITES07. Mater Lett 112:180–182

    Article  CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004a) Biosynthesis of silver and gold nanoparticles from extracts of different parts of the Geranium plant. Appl Nanotechnol 1:69–77

    Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004b) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502

    Article  CAS  PubMed  Google Scholar 

  • Shantkriti S, Rani P (2014) Biological synthesis of copper nanoparticles using Pseudomonas fluorescens. Int J Curr Microbiol App Sci 3(9):374–383

    Google Scholar 

  • Sharma AB, Sharma M, Pandey RK (2009) Synthesis, properties and potential applications of semiconductor Quantum particles. Asian J Chem 21(10):S033–S038

    CAS  Google Scholar 

  • Shedbalkar U, Singh R, Wadhwani S, Gaidhani S, Chopade BA (2014) Microbial synthesis of gold nanoparticles: current status and future prospects. Adv Colloid Interface Sci 209:40–48

    Article  CAS  PubMed  Google Scholar 

  • Shivaji S, Madhu S, Singh S (2011) Extracellular synthesise of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 49:830–837

    Google Scholar 

  • Shivashankarappa A, Sanjay KR (2015) Study on biological synthesis of cadmium sulfide nanoparticles by Bacillus licheniformis and its antimicrobial properties against food borne pathogens. Nanosci Nanotechnol Res 3(1):6–15

    CAS  Google Scholar 

  • Siddiqi KS, Husen A (2016) Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett 11:98. https://doi.org/10.1186/s11671-016-1311-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simkiss K, Wilbur KM (1989) Biomineralization. Academic, New York

    Google Scholar 

  • Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B Biointerfaces 57(1:97–101

    Article  CAS  Google Scholar 

  • Singh V, Patil R, Ananda A, Milani P, Gade W (2010) Biological synthesis of copper oxide nano particles using Escherichia coli. Curr Nanosci 6(4):365–369

    Article  CAS  Google Scholar 

  • Sinha A, Khare SK (2011) Mercury bioaccumulation and simultaneous nanoparticle synthesis by Enterobacter sp. cells. Bioresour Technol 102:4281–4284

    Article  CAS  PubMed  Google Scholar 

  • Sneha K, Sathishkumar M, Mao J, Kwak IS, Yun YS (2010) Corynebacterium glutamicum-mediated crystallization of silver ions through sorption and reduction processes. Chem Eng J 162:989–996

    Article  CAS  Google Scholar 

  • Sundaram PA, Augustine R, Kannan M (2012) Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil. Biotechnol Bioprocess Eng 17:835–840. https://doi.org/10.1007/s12257-011-0582-9

    Article  CAS  Google Scholar 

  • Sunitha A, Isaac RSR, Geo S, Sornalekshmi S, Rose A, Praseetha PK (2013) Evaluation of antimicrobial activity of biosynthesized iron and silver nanoparticles using the fungi Fusarium oxysporum and Actinomycetes sp. on human pathogens. Nano Biomed Eng 5:39–45

    Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2009) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med. https://doi.org/10.1016/j.nano.2009.07.002

    Article  CAS  Google Scholar 

  • Tissue BM, Yuan HB (2003) Structure particle size and annealing gas phase-condensed Eu3+:Y2O3 nanophosphors. J Solid State Chem 171:12–18

    Article  CAS  Google Scholar 

  • Tiwari DK, Behari J, Sen P (2008) Timeanddose-dependent antimicrobial potential of Ag nanoparticles synthesized by top-down approach. Curr Sci 95(5):647–655

    CAS  Google Scholar 

  • Usha R, Prabu E, Palaniswamy M, Venil CK, Rajendran R (2010) Synthesis of metal oxide nanoparticles by Streptomyces sp. for development of antimicrobial textiles. Glob J Biotechnol Biochem 5(3):153–160

    CAS  Google Scholar 

  • Vankar PS, Bajpai D (2010) Preparation of gold nanoparticles from Mirabilis jalapa flowers. Indian J Biochem Biophys 47:157–160

    CAS  PubMed  Google Scholar 

  • Varshney R, Bhadauria S, Gaur MS, Pasricha R (2010) Characterization of copper nanoparticles synthesized by a novel microbiological method. J Miner Metals Mater Soc 62(12):102–104

    Article  CAS  Google Scholar 

  • Velhal SG, Kulkarni SD, Latpate RV (2016) Fungal mediated silver nanoparticle synthesis using robust experimental design and its application in cotton fabric. Int Nano Lett 6:257–264

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus Phaenerochaete chrysosporium. Colloids Surf B Biointerfaces 53:55–59

    Article  CAS  PubMed  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:413–1418

    Article  CAS  Google Scholar 

  • Vilchis-Nestor AR, Sánchez-Mendieta V, Camacho-López MA, Gómez-Espinosa RM, Camacho-López MA, Arenas Alatorre JA (2008) Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Mater Lett 62(17):3103–3105

    Article  CAS  Google Scholar 

  • Wagner E, Plank C, Zatloukal K, Cotton M, Birnstiel ML (1992) Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene transfer vehicle. Proc Natl Acad Sci 89:7934–7938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Yang L, Zhang B, Liu J (2010) Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids Surf B 80(1):94–102

    Article  CAS  Google Scholar 

  • Winterer M, Hahn H, Metallkd Z (2003) Chemical vapor synthesis of nanocrystalline powders. Nanoceramics Chem Vapor Synthesis 94:1084–1090

    CAS  Google Scholar 

  • Xiang L, Wei J, Jianbo S, Guili W, Feng G, Ying L (2007) Purified and sterilized magnetosomes from Magnetospirillum gryphiswaldense MSR-1 were not toxic to mouse fibroblasts in vitro. Lett Appl Microbiol 45:75–81

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Chen K, Chen X (2009) Production, modification and bio-applications of magnetic nanoparticles gestated by magnetotactic bacteria. Nano Res 2(4):261–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Holloway PH (2004) Efficient and photostable ZnS-passivated CdS:Mn luminescent nanocrystals. Adv Funct Mater 14:152–156

    Article  CAS  Google Scholar 

  • Yang JG, Zhou YL et al (2006) Preparation of oleic acid-capped copper nanoparticles. Chem Lett 35(10):1190–1191

    Article  CAS  Google Scholar 

  • Zheng D, Hu C, Gan T, Dang X, Hu S (2010) Preparation and application of a novel vanillin sensor based on biosynthesis of Au-Ag alloy nanoparticles. Sens Actuators B Chem 148:247–252

    Article  CAS  Google Scholar 

  • Zhu L, Ang S, Liu WT (2004) Quantum dots as a novel immunofluorescent detection system for Cryptosporidium parvum and Giardia lamblia. Appl Environ Microbiol 70:597–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azra Yasmin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, T., Abbas, S., Fariq, A., Yasmin, A. (2018). Microbes: Nature’s Cell Factories of Nanoparticles Synthesis. In: Prasad, R., Jha, A., Prasad, K. (eds) Exploring the Realms of Nature for Nanosynthesis. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-99570-0_2

Download citation

Publish with us

Policies and ethics