Skip to main content

Nanodiagnostics Tools for Microbial Pathogenic Detection in Crop Plants

  • Chapter
  • First Online:
Book cover Exploring the Realms of Nature for Nanosynthesis

Abstract

To know about the etiology of any pathological event has a great value, since the effectiveness of the regulatory practices designed and their economic, social, and environmental sustainability will depend on it. A sustainably functional disease management system is based on a set of knowledge, in which case diagnosis and disease risk assessment play a fundamental role. Nanodiagnostic using nanodevices and nanosystems are faster, sensitive, and flexible for the detection/identification of crops diseases compared with traditional diagnostic methods; for these reasons the current chapter will give information about nanotechnology applied to diagnosis of diseases caused by fungi and viruses in some important economic crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboul-Ata AE, Mazyad H, El-Attar AK, Soliman AM, Anfoka G, Zeidaen M, Gorovits R, Sobol I, Czosnek H (2011) Diagnosis and control of cereal viruses in the Middle East. Adv Virus Res 81:33–61

    Article  CAS  PubMed  Google Scholar 

  • Adams FC, Barbante C (2013) Nanoscience, nanotechnology and spectrometry. Spectrochim Acta B 86:3–13

    Article  CAS  Google Scholar 

  • Agrawal AA, Kotanen PM, Mitchell CE, Power AG, Godsoe W, Klironomos J (2005) Enemy release? An experiment with congeneric plant pairs and diverse above-and belowground enemies. Ecology 86:2979–2989

    Article  Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Academic Press, New York, p 803

    Google Scholar 

  • Alghuthaymi MA (2017) Nanotools for molecular identification two novels Cladosporium cladosporioides species (Cladosporiaceae) collected from tomato phyloplane. J Yeast Fungal Res 8(2):11–18

    Article  Google Scholar 

  • Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29(2):221–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16(12):3460–3479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JP, Gleason CA, Foley RC, Thrall PH, Burdon JB, Singh KB (2010) Plants versus pathogens: an evolutionary arms race. Funtc Plant Biol 39(6):499–512

    Article  Google Scholar 

  • Ariffin SAB, Adam T, Hashim U, Faridah S, Zamri I, Uda MNA (2014) Plant diseases detection using nanowire as biosensor transducer. Adv Mater Res 832:113–117

    Article  CAS  Google Scholar 

  • Asselbergh B, de Vleesschauwer D, Höfte M (2008) Global switches and fine-tuning-ABA modulates plant pathogen defense. Mol Plant Mic Interact 21(6):709–719

    Article  CAS  Google Scholar 

  • Azoulay-Shemer T, Bagheri A, Wang C, Palomares A, Stephan AB, Kunz HH, Schroeder JI (2016) Starch biosynthesis in guard cells but not in mesophyll cells is involved in CO2-induced stomatal closing. Plant Physiol 171:788–798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baeummer A (2004) Nanosensors identify pathogens in food. Food Technol 58:51–55

    Google Scholar 

  • Bakshi M, Oelmüller R (2014) WRKY transcription factors. Plant Signal Behav 9:2

    Article  CAS  Google Scholar 

  • Baniukevic J, Hakki Boyaci I, Goktug Bozkurt A, Tamer U, Ramanavicius A, Ramanaviciene A (2013) Magnetic gold nanoparticles in SERS-based sandwich immunoassay for antigen detection by well oriented antibodies. Biosens Bioelectron 43:281–288

    Article  CAS  PubMed  Google Scholar 

  • Benson DM, Jones RK (2001) Diseases of woody ornamentals and trees in nurseries. APS Press, St. Paul, MN

    Google Scholar 

  • Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials forsensing, imaging, drug delivery and therapy. Chem Soc Rev 43:744–764

    Article  CAS  PubMed  Google Scholar 

  • Birkenbihl RP, Diezel C, Somssich IE (2012) Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol 159:266–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boller T, Felix GA (2009) Renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Ann Rev Plant Biol 60:379–406

    Article  CAS  Google Scholar 

  • Boonham N, Glover R, Tomlinson J, Mumford R (2008) Exploiting generic platform technologies for the detection and identification of plant pathogens. In: European Journal of Plant Pathology. Springer, Dordrecht, pp 355–363

    Google Scholar 

  • Bové JM, Vogel R, Albertini D, Bové JM (1988) Discovery of a strain of Tristeza virus (K) inducing no symptoms in Mexican lime. Proceedings of the 10th Conference of IOCV. Spain 1988. International Organization of Citrus Virologists, Riverside, CA, pp 14–16

    Google Scholar 

  • Brooks DM, Hernandez-Guzman G, Kloek AP, Alarcon-Chaidez F, Sreedharan A, Rangaswamy V, Penaloza-Vazquez A, Bende CL, Kunkel BN (2004) Identification and characterization of a well-defined series of coronatine biosynthetic mutants of Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact 17:162–174

    Article  CAS  PubMed  Google Scholar 

  • Bürling K, Hunsche M, Noga G (2011) Use of blue-green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in winter wheat. J Plant Physiol 168:1641–1648

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Ye Y, Liu S (2011) Gold nanoparticle-based signal amplification for biosensing. Anal Biochem 417(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Chaerle L, Lenk S, Leinonen I, Jones HG, Van Der Straeten D, Buschmann DC (2009) Multisensor plant imaging: towards the development of a stress catalogue. Biotechnol J 4:1152–1167

    Article  CAS  PubMed  Google Scholar 

  • Chartuprayoon N, Rheem Y, Ng J, Nam J, Chen W, Myung N (2013) Polypyrrole nanoribbon based chemiresistive immunosensors for viral plant pathogen detection. Anal Methods 5(14):3497–3502

    Article  CAS  Google Scholar 

  • Chater CC, Oliver J, Casson S, Gray JE (2014) Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development. New Phytol 202:376–391

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594

    Article  CAS  Google Scholar 

  • Chen H, Xue L, Chintamanani S, Germain H, Lin H, Cui H, Cai R, Zuo J, Tang X, Li X, Guo H, Zhou JM (2009) Ethylene insensitive3 and ethylene insensitive3-like1 repress salicylic acid induction deficient2 expression to negatively regulate plant innate immunity in Arabidopsis. Plant Cell 21:2527–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitarra LG, van den Bulk RW (2003) The application of flow cytometry and fluorescent probe technology for detection and assessment of viability of plant pathogenic bacteria. Eur J Plant Pathol 109:407–417

    Article  CAS  Google Scholar 

  • Clark MF, Adams A (1977) Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J Gen Virol 34:475–483

    Article  CAS  PubMed  Google Scholar 

  • Clarke J, Wu H-C, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4(4):265–270

    Article  CAS  PubMed  Google Scholar 

  • Cooke DEL, Drenth A, Duncan JM, Wagels G, Brasier CM (2000) A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet Biol 30:17–32

    Article  CAS  PubMed  Google Scholar 

  • Cséfalvay L, Gaspero GD, Matous K, Bellin D, Ruperti B, Olejnickova J (2009) Pre-symptomatic detection of Plasmopara viticola infection in grapevine leaves using chlorophyll fluorescence imaging. Eur J Plant Pathol 125:291–302

    Article  CAS  Google Scholar 

  • D’Hondt L, Höfte M, Van Bockstaele E, Leus L (2011) Applications of flow cytometry in plant pathology for genome size determination, detection and physiological status. Mol Plant Pathol 12(8):815–828

    Article  PubMed  PubMed Central  Google Scholar 

  • Dameron CT, Reeser RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwaldm ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338(6216):596–597

    Article  CAS  Google Scholar 

  • Delalieux S, van Aardt J, Keulemans W, Schrevens E, Coppin P (2007) Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: non-parametric statistical approaches and physiological implications. Eur J Agron 27:130–143

    Article  Google Scholar 

  • DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91

    Article  CAS  PubMed  Google Scholar 

  • Dewey F, Marshall G (1996) Production and use of monoclonal antibodies for the detection of fungi. In: Proceeding of British Crop Protection Council Symposium, Farnham, UK, pp 18–21

    Google Scholar 

  • Dharanivasan G, Mohammed Riyaz SU, Jesse DMIT, Muthuramalingam R, Rajendran G, Kathiravan K (2016) DNA templated self-assembly of gold nanoparticle clusters in the colorimetric detection of plant viral DNA using a gold nanoparticle conjugated bifunctional oligonucleotide probe. RSC Adv 6:11773

    Article  CAS  Google Scholar 

  • Drygin YF, Blintsov AN, Osipov AP, Grigorenko VG, Andreeva IP, Uskov AI, Varitsev YA, Anisimov BV, Novikov VK, Atabekov JG (2009) High-sensitivity express immunochromatographic method for detection of plant infection by Tobacco mosaic virus. Biochem Mosc 74:986–993

    Article  CAS  Google Scholar 

  • Du M, Zhai Q, Deng L, Li S, Li H, Yan L, Huang Z, Wang B, Jiang H, Huang T, Chang L, Jia W, Kang L, Jing L, Chuan L (2014) Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack. Plant Cell 26:3167–3184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubas ST, Pimpan V (2008) Green synthesis of silver nanoparticles for ammonia sensing. Talanta 76(1):29–33

    Article  CAS  PubMed  Google Scholar 

  • Edmundson MC, Capeness M, Horsfall L (2014) Exploring the potential of metallic nanoparticles within synthetic biology. New Biotechnol 31(6):572–578

    Article  CAS  Google Scholar 

  • Ellis SD, Boehm MJ, Qu F (2008) Agriculture and natural resources: viral diseases of plants (PP401.05) [Fact Sheet]. Ohio State Univ. http://www.learnnc.org/lp/media/uploads/2010/11/viral-disease-fact-sheet.pdf

  • Erwin DC, Ribeiro OK (1996) Phytophthora: diseases worldwide. APS Press, St. Paul, MN

    Google Scholar 

  • Esker PD, Sparks AH, Campbell L, Guo Z, Rouse M, Silwal SD, Tolos S, Van Allen B, Garrett KA (2008) Ecology and epidemiology in R: disease forecasting and validation. [Online]. Plant Health Instructor. https://doi.org/10.1094/PHIA_029-01

  • Etefagh R, Azhir E, Shahtahmasebi N (2013) Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Sci Iranica 20(3):1055–1058

    Google Scholar 

  • Eun AJ-C, Wong S-M (2000) Molecular beacons: a new approach to plant virus detection. Phytopathology 90:269–275

    Article  CAS  PubMed  Google Scholar 

  • Eun AJ-C, Huang L, Chew F-T, Li SF-Y, Wong S-M (2002) Detection of two orchid viruses using quartz crystal microbalance (QCM) immunosensors. J Virol Methods 99:71–79

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Umasankar Y, Ramasamy RP (2014) Electrochemical detection of p-ethylguaiacol, a fungi infected fruit volatile using metal oxide nanoparticles. Analyst 139:3804–3810

    Article  CAS  PubMed  Google Scholar 

  • Farmer EE, Alméras E, Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6:372–378

    Article  CAS  PubMed  Google Scholar 

  • Farr DF, Rossman AY (2014) Fungal databases, systematic mycology and microbiology laboratory. ARS, USDA, Washington, DC http://nt.ars-grin.gov/fungaldatabases/

    Google Scholar 

  • FHIA (2007) Deterioro poscosecha de las frutas y hortalizas frescas por hongos y bacterias. 4:2-5. http://fhia.org.hn/dowloads/fhiainfdic2007.pdf

  • Flor HH (1956) The complementary genic systems in flax and flax rust. Adv Genet 8:29–54

    Google Scholar 

  • Friesen TL, Faris JD, Solomon PS, Oliver RP (2008) Host-specific toxins: effectors of necrotrophic pathogenicity. Cell Microbiol 10:1421–1428

    Article  CAS  PubMed  Google Scholar 

  • Fujita DB (1990) In: Jones AL, Aldwinkle HS (eds) Crown, collar, and root rot. Compendium of apple and pear diseases. APS Press, St. Paul, MN

    Google Scholar 

  • García CV (2004). Introducción a la microbiología. Segunda Edición. Editorial EUNED, Costa Rica, pp 103–107

    Google Scholar 

  • Gilbert GS, Parker IM (2010) Rapid evolution in a plant-pathogen interaction and the consequences for introduced host species. Evol Appl 3:144–156

    Article  PubMed  PubMed Central  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Goluch ED, Nam JM, Georganopoulou DG, Chiesl TN, Shaikh KA, Ryu KS, Barron AE, Mirkin CA, Liu C (2006) A biobarcode assay for on-chip attomolar-sensitivity protein detection. Lab Chip 6(10):1293–1299

    Article  CAS  PubMed  Google Scholar 

  • Gorris MT, Alarcon B, Lopez M, Cambra M (1994) Characterization of monoclonal antibodies specific for Erwinia carotovora subsp. atroseptica and comparison of serological methods for its sensitive detection on potato tubers. App Environ Microbiol 60:2076–2085

    CAS  Google Scholar 

  • Grahl T, Märkl H (1996) Killing of microorganisms by pulsed electric fields. Appl Microbiol Biotechnol 45(1–2):148–157

    Article  CAS  PubMed  Google Scholar 

  • Grant MR, Kazan K, Manners JM (2013) Exploiting pathogens’ tricks of the trade for engineering of plant disease resistance: challenges and opportunities. Microb Biotechnol 6(3):212–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grimmer MK, John Foulkes M, Paveley ND (2012) Foliar pathogenesis and plant water relations: a review. J Exp Bot 63:4321–4331

    Article  CAS  PubMed  Google Scholar 

  • Guimaraes RL, Stotz HU (2004) Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiol 136:3703–3711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haji-Hashemi H, Norouzia P, Safarnejadc MR, Ganjalia MR (2017) Label-free electrochemical immunosensor for direct detection of Citrus tristeza virus using modified gold electrode. Sensors Actuators B 244:211–216

    Article  CAS  Google Scholar 

  • Hassen WM, Duplan V, Frost E, Dubowski JJ (2011) Quantitation of influenza a virus in the presence of extraneous protein using electrochemical impedance spectroscopy. Electrochim Acta 56:8325–8328

    Article  CAS  Google Scholar 

  • Hayat MA (1989) Colloidal gold: principles, methods, and applications, vol 1. Academic Press, San Diego, CA, 538 p

    Google Scholar 

  • Holzinger M, Le Goff A, Cosnier S (2014) Nanomaterials for biosensing applications: a review. Front Chem 2:63 p

    Google Scholar 

  • Hull R (2002) Matthews’ plant virology, 4th edn. Academia Press, San Diego, CA, 1001 p

    Google Scholar 

  • Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechol 4:165

    Article  CAS  Google Scholar 

  • Jain K (2003) Nanodiagnostics: application of nanotechnology (NT) in molecular diagnostics. Expert Rev Mol Diagn 3(2):153–161

    Article  CAS  PubMed  Google Scholar 

  • James C (2013) Polypyrrole nanoribbon based chemiresistive immunosensors for viral plant pathogen detection. Anal Methods 5:3497–3502

    Article  CAS  Google Scholar 

  • Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubtim S, Leonhard N, Ellis BE, Murata Y, Kwak JM (2009) MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci U S A 106:20520–20525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jammes F, Yang X, Xiao S, Kwak JM (2011) Two Arabidopsis guard cell-preferential MAPK genes, MPK9 and MPK12, function in biotic stress response. Plant Signal Behav 6:1875–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeeva ML, Mishra AK, Vidyadharan P, Misra RS, Hegde V (2010) A species-specific polymerase chain reaction assay for rapid and sensitive detection of Sclerotium rolfsii. Aust Plant Pathol 39(6):517–523

    Article  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Jones JD, Vance RE, Dangl JL (2016) Intracellular innate immune surveillance devices in plants and animals. Science 354:aaf6395. https://doi.org/10.1126/science.aaf6395

    Article  CAS  PubMed  Google Scholar 

  • Joseph T, Morrison M (2006) Nanotechnology in agriculture and food. A Nanoforum report, Institute of Nanotechnology. www.nanoforum.org

  • Kageyama K, Senda M, Asano T, Suga H, Ishiguro K (2007) Intra-isolateheterogeneity of the ITS region of rDNA in Pythium helicoides. Mycological Res 111:416–423

    Article  CAS  Google Scholar 

  • Karpovich-Tate N, Spanu P, Dewey FM (1998) Use of monoclonal antibodies to determine biomass of Cladosporium fulvum in infected tomato leaves. Mol Plant Pathog Interact 11:710–716

    Article  CAS  Google Scholar 

  • Kashyap PL, Kaur S, Sanghera GS, Kang SS, Pannu PPS (2011) Novel methods for quarantine detection of Karnal bunt (Tilletia indica) of wheat. Elixir Agric 31:1873–1876

    Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK, Sharma AK (2013) Myconanotechnology in agriculture: a perspective. World J Microbiol Biotechnol 29(2):191–207

    Article  CAS  PubMed  Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK (2017) Nanodiagnostics for plant pathogens. Environ Chem Lett 15:7–13

    Article  CAS  Google Scholar 

  • Kattke MD, Gao EJ, Sapsford KE, Stephenson LD, Kumar A (2011) FRET-based quantum dot immunoassay for rapid and sensitive detection of Aspergillus amstelodami. Sensors 11(6):6396–6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazan K, Lyons R (2014) Intervention of phytohormone pathways by pathogen effectors. Plant Cell 26:2285–2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khiyami MA, Almoammar H, Awad YM, Alghuthaym MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28(5):775–785

    Article  PubMed  PubMed Central  Google Scholar 

  • Khlebtsov NG, Dykman LA (2010) Optical properties and biomedical applications of plasmonic nanoparticles. J Quant Spectrosc Radiat Transf 111:1–35

    Article  CAS  Google Scholar 

  • Kim JT, Park SY, Choi W, Lee YH, Kim HT (2008) Characterization of Colletotrichum isolates causing anthracnose of pepper in Korea. Plant Pathol J 24(1):17–23

    Article  CAS  Google Scholar 

  • Kim TH, Bohmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Ann Rev Plant Biol 61:561–591

    Article  CAS  Google Scholar 

  • Kim Y, Park S, Gilmour SJ, Thomashow MF (2013) Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis. Plant J 75:364–376

    Article  CAS  PubMed  Google Scholar 

  • Kuckenberg J, Tartachnyk I, Noga G (2009) Temporal and spatial changes of chlorophyll fluorescence as a basis for early and precise detection of leaf rust and powdery mildew infections in wheat leaves. Precis Agric 10:34–44

    Article  Google Scholar 

  • Landa BB, Montes-Borrego M, Muñoz-Ledesma FJ, Jiménez-Díaz RM (2007) Phylogenetic analysis of downy mildew pathogens of opium poppy and PCRBased in planta and seed detection of Peronospora arborescens. Phytopathology 97(11):1380–1390

    Article  CAS  PubMed  Google Scholar 

  • Lattanzio VMT, Nivarlet N, Lippolis V, Gatta SD, Huet AC, Delahaut P, Granier B, Visconti A (2012) Multiplex dipstick immunoassay for semi-quantitative determination of fusarium mycotoxins in cereals. Anal Chim Acta 718:99–108

    Article  CAS  PubMed  Google Scholar 

  • Lebel E, Heifetz P, Thorne L, Uknes S, Ryals J, Ward E (1998) Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J 16(2):123–133

    Article  Google Scholar 

  • Li Y, Schluesener H, Xu S (2010) Gold nanoparticle-based biosensors. Gold Bull 43:2941. https://doi.org/10.1007/BF03214964

    Article  Google Scholar 

  • Lievens B, Brouwer M, Vanachter ACRC, Levesque CA, Cammue BPA, Thomma BPHJ (2005a) Quantitative assessment of phytopathogenic fungi in various substrates using a DNA macroarray. Environ Microbiol 7:1698–1710

    Article  CAS  PubMed  Google Scholar 

  • Lievens B, Grauwet TJMA, Cammue BPA, Thomma BPHJ (2005b) Recent developments in diagnostics of plant pathogens: a review. Recent Res Dev Microbiol 9:57–79

    CAS  Google Scholar 

  • Lin H-Y, Huang C-H, Huang C-C, Liu Y-C, Chau L-K (2012) Multiple resonance fiber-optic sensor with time division multiplexing for multianalyte detection. Opt Lett 37(19):3969–3971

    Article  PubMed  Google Scholar 

  • Lin H-Y, Huang C-H, Lu S-H, Kuo I-T, Chau L-K (2014) Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor. Biosens Bioelectron 51:371–378

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zhang T, Jia J, Sun J (2016) The wheat mediator subunit TaMED25 interacts with the transcription factor TaEIL1 to negatively regulate disease resistance against powdery mildew. Plant Physiol 170:1799–1816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loon LC (1985) Pathogenesis-related proteins. Plant Mol Biol 4(2–3):111–116

    Article  PubMed  Google Scholar 

  • López MM, Llop P, Cubero J, Penyalver R, Caruso P, Bertolini E, Penalver J, Gorris MT, Cambra M (2001) Strategies for improving serological and molecular detection of plant pathogenic bacteria. In: Plant pathogenic bacteria. Springer, Berlin, pp 83–86

    Chapter  Google Scholar 

  • López MM, Bertolini E, Olmos A, Caruso P, Corris MT, Llop P, Renyalver R, Cambra M (2003) Innovative tools for detection of plant pathogenic viruses and bacteria. Int Microbiol 6:233–243

    Article  PubMed  CAS  Google Scholar 

  • López MM, Llop P, Olmos A, Marco-Noales E, Cambra M, Bertolini E (2009) Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Curr Issues Mol Biol 11:13–46

    PubMed  Google Scholar 

  • Maeda Y, Toyoda T, Mogi T, Taguchi T, Tanaami T, Yoshino T, Matsunaga T, Tanak T (2016) DNA recovery from a single bacterial cell using charge-reversible magnetic nanoparticles. Colloids Surf B Biointerfaces 139:117–122

    Article  CAS  PubMed  Google Scholar 

  • Mahlein AK, Oerke E, Steiner U, Dehne H (2012) Recent advances in sensing plant diseases for precision crop protection. Eur J Plant Pathol 133:197–209

    Article  CAS  Google Scholar 

  • Martin FN, Tooley PW (2003) Phylogenetic relationships among Phytophthora species inferred from sequence analysis of mitochondrially encoded cytochrome oxidase I and II genes. Mycologia 95:269–284

    Article  CAS  PubMed  Google Scholar 

  • Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, Villa P, Stroppiana D, Boschetti M, Goulart LR, Davis CE, Dandekar AM (2014) Advanced methods of plant disease detection: a review. Agron Sustain Dev 35(1):1–25

    Article  Google Scholar 

  • Mazarei M, Teplova I, Hajimorad MR, Stewart CN Jr (2008) Pathogen phytosensing: plants to report plant pathogens. Sensors 8:2628–2641

    Article  PubMed  PubMed Central  Google Scholar 

  • McCartney AH, Foster SJ, Fraaige BA, Ward E (2003) Molecular diagnostics for fungal plant pathogens. Pest Manag Sci 59:129–142

    Article  CAS  PubMed  Google Scholar 

  • McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3:1057–1062

    Article  CAS  Google Scholar 

  • McLachlan DH, Lan J, Geilfus CM, Dodd AN, Larson T, Baker A, Horak H, Kollist H, He Z, Graham I, Mickelbart MV, Hetherington AM (2016) The breakdown of stored triacylglycerols is required during light-induced stomatal opening. Curr Biol 26:707–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    Article  CAS  PubMed  Google Scholar 

  • Mengiste T (2012) Plant immunity to necrotrophs. Annu Rev Phytopathol 50:267–294

    Article  CAS  PubMed  Google Scholar 

  • Mohr PG, Cahill DM (2007) Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct Integr Genomics 7:181–191

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SE, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1:414–419

    Google Scholar 

  • Nezhad AS (2014) Future of portable devices for plant pathogen diagnosis. Lab Chip 14:2887–2904

    Article  CAS  PubMed  Google Scholar 

  • Ni W, Chen H, Kou X, Yeung W, Wang J (2008) Optical fiber-excited surface plasmon resonance spectroscopy of single and ensemble gold nanorods. J Phys Chem C 112(22):8105–8109

    Article  CAS  Google Scholar 

  • Nusz GJ, Marinakos SM, Curry AC, Dahlin A, Höök F, Wax A, Chilkoti A (2008) Anal Chem 80:984–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Oerke EC, Dehne HW, Schönbeck F, Weber A (1994) Crop production and crop protection. Estimated losses in major food and cash crops. Elsevier, Amsterdam

    Google Scholar 

  • Pal S, Ying W, Alocilja EC, Downes FP (2008) Sensitivity and specificity performance of a direct-charge transfer biosensor for detecting Bacillus cereus in selected food matrices. Biosyst Eng 99(4):461–468

    Article  Google Scholar 

  • Parab HJ, Jung C, Lee JH, Park HG (2010) A gold nanorod-based optical DNA biosensor for the diagnosis of pathogens. Biosens Bioelectron 26:667–673

    Article  CAS  PubMed  Google Scholar 

  • Parker IM, Gilbert GS (2007) When there is no escape: the effects of natural enemies on native, invasive, and noninvasive plants. Ecology 88:1210–1224

    Article  PubMed  Google Scholar 

  • Pasquali M, Piatti P, Gullino ML, Garibaldi A (2006) Development of a real-time polymerase chain reaction for the detection of Fusarium oxysporum f. Sp basilica from basil seed and roots. J Phytopathol 154:632–636

    Article  CAS  Google Scholar 

  • Pearson MN, Clover GRG, Guy PL, Fletcher JD, Beever RE (2006) A review of the plant virus, viroid and mollicute records for New Zealand. Australas. Plant Pathol 35:217–252

    Google Scholar 

  • Perdikaris A, Vassilakos N, Yiakoumettis I, Kektsidou O, Kintzios S (2011) Development of a portable, high throughput biosensor system for rapid plant virus detection. J Virol Methods 177(1):94–99

    Article  CAS  PubMed  Google Scholar 

  • Pimentel D (2009) Invasive plants: their role in species extinctions and economic losses to agriculture in the USA. In: Inderjit (ed) Management of invasive weeds, invading nature, Springer Series in invasion ecology, vol 5. Springer, Dordrecht, pp 1–7

    Chapter  Google Scholar 

  • Powers T (2006) Nematode molecular diagnostics: from bands to barcodes. Annu Rev Phytopathol 42:367–383

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasanna BM (2007) Nanotechnology in agriculture. ICAR National Fellow, Division of Genetics, I.A.R.I., New Delhi http://www.iasri.res.in/ebook/EBADAT/6-Other Useful Techniques/10-nanotech_in_Agriculture__BM_Prasanna__1.2.2007.pdf

    Google Scholar 

  • Rafidah AR, Faridah S, Shahrul AA, Mazidah M, Zamri I (2016) Chronoamperometry measurement for rapid cucumber mosaic virus detection in plants. Proc Chem 20:25–28

    Article  CAS  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293

    Article  CAS  PubMed  Google Scholar 

  • Ricci F, Volpe G, Micheli L, Palleschi G (2007) A review on novel developments and applications of immunosensors in food analysis. Anal Chim Acta 605:111–127

    Article  CAS  PubMed  Google Scholar 

  • Rowe HC, Kliebenstein DJ (2008) Complex genetics control natural variation in Arabidopsis thaliana resistance to Botrytis cinerea. Genetics 180:2237–2250

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz-García AB, Olmos A, Arahal DR, Antúnez O, Llop P, Pérez-Ortín JE, López MM, Cambra M (2004) Biochip electrónico para la detección y caracterización simultánea de los principales virus y bacterias patógenos de la patata. XII Congreso de la Sociedad Española de Fitopatología. Lloret de Mar. 12 p

    Google Scholar 

  • Safarnejad MR, Samiee F, Tabatabie M, Mohsenifar A (2017) Development of quantum dot-based Nanobiosensors against Citrus Tristeza virus (CTV). Sensors & Transducers Published by IFSA Publishing, S. L. http://www.sensorsportal.com

  • Safarpour H, Safarnejad MR, Tabatabaei M, Mohsenifar A, Mohsenifar A, Rad R, Basirat M, Shahryari F, Hasanzadeh F (2012) Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae. Can J Plant Pathol 34:507–515

    Article  Google Scholar 

  • Sankaran S, MishraA ER, Davis C (2010) A review of advanced techniques for detecting plant diseases. Comput Electron Agric 72:1–13

    Article  Google Scholar 

  • Scarpeci TE, Zanor MI, Mueller-Roeber B, Valle EM (2013) Overexpression of AtWRKY30 enhances abiotic stress tolerance during early growth stages in Arabidopsis thaliana. Plant Mol Biol 83(3):265–277

    Article  CAS  PubMed  Google Scholar 

  • Schaad NW, Frederick RD (2002) Real-time PCR and its application for rapid plant disease diagnostics. Can J Plant Pathol 24:250–258

    Article  CAS  Google Scholar 

  • Schuman GL, D’Arcy CJ (2010) Essential plant pathology, 2nd edn. The American Phytopathological Society, St. Paul, MN, 369 p

    Google Scholar 

  • Schuster E, Dunn-Coleman N, Frisvad JC, Van Dijck PW (2002) On the safety of Aspergillus niger: a review. Appl Microbiol Biotechnol 59(4–5):426–435

    CAS  PubMed  Google Scholar 

  • Sekhon BS (2010) Food nanotechnology: an overview. J Nanotechnol Sci Appl 3:1–15

    CAS  Google Scholar 

  • Sharma A, Kaushal A, Kulshrestha S (2017) A nano-Au/C-MWCNT based label free amperometric immunosensor for the detection of capsicum chlorosis virus in bell pepper. Arch Virol 162:2047–2052

    Article  CAS  PubMed  Google Scholar 

  • Shimada TL, Hara-Nishimura I (2015) Leaf oil bodies are subcellular factories producing antifungal oxylipins. Curr Opin Plant Biol 25:145–150

    Article  CAS  PubMed  Google Scholar 

  • Shojaei TR, Salleh MAM, Sijam K, Rahim RA, Mohsenifar A, Safarnejad R, Tabatabaei M (2016a) Detection of Citrus tristeza virus by using fluorescence resonance energy transfer-based biosensor. Spectrochim Acta A Mol Biomol Spectrosc 169:216–222

    Article  CAS  PubMed  Google Scholar 

  • Shojaei TR, Salleh MAM, Sijam K, Rahim RA, Mohsenifar A, Safarnejad R, Tabatabaei M (2016b) Fluorometric immunoassay for detecting the plant virus Citrus tristeza using carbon nanoparticles acting as quenchers and antibodies labeled with CdTe quantum dots. Microchim Acta 183:2277

    Article  CAS  Google Scholar 

  • Singh S, Singh M, Agrawal VV, Kumar A (2010) An attempt to develop surface plasmon resonance based immuno sensor for Karnal bunt (Tilletia indica) diagnosis based on the experience nano-gold based lateral flow immune dipstick test. Thin Solid Films 519(3):1156–1159

    Article  CAS  Google Scholar 

  • Small J, Call DR, Brockman FJ, Straub TM, Chandler DP (2001) Direct detection of 16S rRNA in soil extracts by using oligonucleotide microarrays. Appl Environ Microbiol 67(10):4708–4716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sosnowski RG, Tu E, Butler WF, O’Connell JP, Heller MJ (1997) Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control. Proc Natl Acad Sci U S A 94:1119–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan B, Tung S (2015) Development and applications of portable biosensors. J Lab Autom 20:365–389

    Article  CAS  PubMed  Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Du S, Wang X, Zhao W, Li Q (2011) A label-free electrochemical immunosensor for carbofuran detection based on a sol-gel entrapped antibody. Sensors 11:9520–9531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swierczewska M, Liu G, Chen X (2012). High-sensitivity nanosensors for biomarker detection. Chemical Society Review 41:2641–2655

    Article  CAS  PubMed  Google Scholar 

  • Tan W, Wang K, He X, Zhao XJ, Drake T, Wang L, Bagwe RP (2004) Bionanotechnology based on silica nanoparticles. Med Res Rev 24(5):621–638

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S (2006) Cytokinin and auxin inhibit abscisic acid induced stomatal closure by enhancing ethylene production in Arabidopsis. J Exp Bot 57:2259–2266

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Wang F, Hou X, Wang Z, Huang Z (2014) Genome-wide fractionation and identification of WRKY transcription factors in chinese cabbage (Brassica rapa ssp. pekinensis) reveals collinearity and their expression patterns under abiotic and biotic stresses. Plant Mol Biol Rep 32(4):781–795

    Article  CAS  Google Scholar 

  • Tang D, Wang G, Zhou J (2017) Receptor kinases in plant-pathogen interactions: more than pattern recognition. Plant Cell 29:618–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14(6):310–317

    Article  CAS  PubMed  Google Scholar 

  • Torres-Calzada C, Tapia-Tussell R, Quijano-Ramayo A, Martin-Mex R, Rojas-Herrera R, Higuera Ciapara I, Perez-Brito D (2011) A species-specific polymerase chain reaction assay for rapid and sensitive detection of Colletotrichum capsici. Mol Biotechnol 49(1):48–55

    Article  CAS  PubMed  Google Scholar 

  • Trdá L, Fernandez O, Boutrot F, Héloir MC, Kelloniemi J, Daire X, Adrian M, Clément C, Zipfel C, Dorey S, Poinssot B (2014) The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria. New Phytol 201:1371–1384

    Article  PubMed  CAS  Google Scholar 

  • Truman W, Sreekanta S, Lu Y, Bethke G, Tsuda K, Katagiri F, Glazebrook J (2013) The calmodulin-binding protein60 family includes both negative and positive regulators of plant immunity. Plant Physiol 163:1741–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhl J, Tang Y, Cockerill ER (2011) Fluorescence resonance energy transfer. In: Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (eds) Molecular microbiology. ASM Press, Washington, DC, pp 231–244. https://doi.org/10.1128/9781555816834.ch14

    Chapter  Google Scholar 

  • Validov SZ, Kamilova FD, Lugtenberg BJJ (2011) Monitoring of pathogenic and non-pathogenic Fusarium oxysporum strains during tomato plant infection. Microb Biotechnol 4(1):82–88

    Article  CAS  PubMed  Google Scholar 

  • van der Want JPH, Dijkstra J (2006) A history of plant virology. Arch Virol 51:1467–1498

    Article  CAS  Google Scholar 

  • van der Wolf J, van Bechhoven JRCM, Bonants PJM, Schoen CD (2001) New technologies for sensitive and specific routine detection of plant pathogenic bacteria. In: Plant pathogenic bacteria. Springer, Berlin, pp 75–77

    Chapter  Google Scholar 

  • van Kleunen M, Fischer M (2009) Release from foliar and floral fungal pathogen species does not explain the geographic spread of naturalized north American plants in Europe. J Ecol 97:385–392

    Article  Google Scholar 

  • van Loon LC, Geraats BP, Linthorst HJ (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184–191

    Article  PubMed  CAS  Google Scholar 

  • Vernon C, Vizcarra-Mendoza M (2000) Separation kinetics of Karnal bunt (Tilletia indica) infected wheat (Triticum aestivum) grains in a batch operated fluidized bed. Food Sci Technol Int 6(2):137–143

    Article  Google Scholar 

  • Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  CAS  PubMed  Google Scholar 

  • Wan D, Li R, Zou B, Zhang X, Cong J, Wang R, Xia Y, Li G (2012) Calmodulin binding protein CBP60g is a positive regulator of both disease resistance and drought tolerance in Arabidopsis. Plant Cell Rep 31:1269–1281

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li PC (2010) Gold nanoparticle-assisted single base-pair mismatch discrimination on a microfluidic microarray device. Anal Biochem 400(2):282–288

    Article  CAS  PubMed  Google Scholar 

  • Wang L, O’Donoghue MM, Tan W (2006) Nanoparticles for multiplex diagnostics and imaging. Nanomedicine 1(4):413–426

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Tsuda K, Sato M, Cohen JD, Katagiri F, Glazebrook J (2009) Arabidopsis CaM binding protein CBP60g contributes to MAMP induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathog 5(2):e1000301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Wang X, Li Y, Yan S, Zhou Q, Gao B, Peng J, Du J, Fu Q, Jia S, Zhang J, Zhan L (2012) A novel, universal and sensitive lateral-flow based method for the detection of multiple bacterial contamination in platelet concentrations. Anal Sci 28:237–241

    Article  CAS  PubMed  Google Scholar 

  • Warad HC, Ghosh SC, Thanachayanont C, Dutta J, Hilborn JG (2004) Highly luminescence manganese doped ZnS quantum dots for biological labeling. In: Proceedings of the International Conference on Smart Materials/Intelligent Materials, Chiang Mai, Thailand, 1–3 December 2004, pp 203–206

    Google Scholar 

  • Ward E, Foster SJ, Fraaije BA, Mccartney HA (2004) Plant pathogen diagnostics: immunological and nucleic acid based approaches. Ann Appl Biol 145:1–16

    Article  CAS  Google Scholar 

  • Wei Y, Shi H, Xia Z, Tie W, Ding Z, Yan Y, Wang W, Hu W, Li K (2016) Genome-wide identification and expression analysis of the WRKY gene family in Cassava. Front Plant Sci 7:25

    PubMed  PubMed Central  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Wolfe LM (2002) Why alien invaders succeed: support for the escape-from-enemy hypothesis. Am Nat 160:705–711

    PubMed  Google Scholar 

  • Yadav A, Kon K, Kratosova G, Duran N et al (2015) Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 37:2099–2120

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Li H, Jiang X (2008) Detection of foodborne pathogens using bioconjugated nanomaterials. Microfluid Nanofluid 5(5):571–583

    Article  CAS  Google Scholar 

  • Yang C, Lu X, Ma B, Chen SY, Zhang JS (2015) Ethylene signaling in rice and Arabidopsis: conserved and diverged aspects. Mol Plant 8:495–505

    Article  CAS  PubMed  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for a rapid detection of plant pathogens. Adv Mater Res 79:513–516

    Article  CAS  Google Scholar 

  • Yuen GY, Craig ML, Avila F (1993) Detection of Pythium ultimum with a species-specific monoclonal antibody. Plant Dis 77:692–698

    Article  CAS  Google Scholar 

  • Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact 25:139–150

    Article  CAS  PubMed  Google Scholar 

  • Zeng C, Huang X, Xu J, Li G, Ma J, Ji HF, Zhu S, Chen H (2013) Rapid and sensitive detection of maize chlorotic mottle virus using surface plasmon resonance-based biosensor. Anal Biochem 440:18–22

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Qin Z, Liu X, Ustin SL (2003) Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. Int J Appl Earth Observ Geoinf 4:295–310

    Article  Google Scholar 

  • Zhao J, Wang XJ, Chen CQ, Huang LL, Kang ZS (2007) A PCR-based assay for detection of Puccinia striiformis f. sp tritici in wheat. Plant Dis 91(12):1969–1674

    Article  CAS  Google Scholar 

  • Zheng Z, Qamar SA, Chen Z, Mengiste T (2006) Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. Plant J 48:592–605

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Zhang WN, Tian JY, Zhao WY, Chen ZQ, Sun LH, Liu FQ (2016) Development of a lateral-flow assay (LFA) for rapid detection of soybean mosaic virus. J Virol Methods 235:51–57

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Álvarez, S.P., Tapia, M.A.M., Medina, J.A.C., Ardisana, E.F.H., Vega, M.E.G. (2018). Nanodiagnostics Tools for Microbial Pathogenic Detection in Crop Plants. In: Prasad, R., Jha, A., Prasad, K. (eds) Exploring the Realms of Nature for Nanosynthesis. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-99570-0_16

Download citation

Publish with us

Policies and ethics